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Abstract—We present an efficient approach to learn past-time
linear temporal logic formulas (PLTL) from a set of propositional
variables and a sample of finite traces over those variables. The
efficiency of our approach can be attributed to a careful encoding
of the PLTL formula learning problem as a bit-vector function
synthesis problem, and the use of an enhanced Syntax-Guided
Synthesis (SyGuS) engine to solve the latter. We implemented our
approach in a tool called SYSLITE and empirically evaluated its
efficacy with two case studies. In these case studies, we observe
that SYSLITE on average enjoys a speedup of 44x over current
learning approaches for temporal formulas while learning the
expected formulas in the vast majority of cases.

I. INTRODUCTION

We are interested in the problem of synthesizing past-time,
propositional linear temporal logic (PLTL) formulas when
given an alphabet (i.e.,, a set of propositional variables) and a
sample of finite traces as inputs. The input sample consists of a
set of positive traces and a disjoint set of negative traces. The
synthesized PLTL formulas — containing the usual logical
connectives, past-time temporal operators, and propositional
variables from the input alphabet — are required to be satisfied
by each of the positive traces and falsified by each of the
negative traces. In machine learning terms, our goal is to
learn classifiers for the input traces. However, in contrast to
statistical learning approaches, our setting requires an exact
classifier for the sample traces, that is, one that rejects no
positive traces and accepts no negative ones [1], [2].

The synthesis of PLTL formulas from finite samples has a
variety of applications, including security policy mining from
logs [3], [4], debugging or understanding the behavior of a
system [5], and identifying the root cause of a protocol’s mis-
behavior [6], [7]. The PLTL fragment we consider represents
safety properties amenable to efficient runtime verification [8]–
[12]. This fragment or its variants have been used to represent
security, privacy, and safety properties of systems which can
be efficiently enforced through runtime monitoring [11]–[15].

We use PLTL formula synthesis to learn attack signatures
for cellular networks such as 3G, 4G LTE, and 5G from a set
of benign (i.e., positive) and attack (i.e., negative) traces. The
cellular network attacks we consider are possible due to the
protocol state machine’s inability to handle particular out-of-
order packets injected over-the-air by an adversary [6], [16]–
[20]. Such attack signatures can be characterized by PLTL
formulas when considering the relative ordering of packets
and their payloads received/sent by the cellular device. One
can envision a protocol monitor installed on a mobile device
that captures messages from the cellular modem with the

goal of detecting particular attack signatures, and notifies the
user when such attacks are detected. To our knowledge, there
exist no attack notification mechanisms of this kind currently.
Efficiently solving the PLTL formula synthesis problem is the
first technical step towards building such mechanisms.

Prior work. The prior work most relevant to ours is the one
by Neider and Gavran [5]. They present two methods for
synthesizing propositional, future-only linear temporal logic
(LTL) formulas given an alphabet and a sample of (finitely
representable) infinite traces. The first method formulates the
LTL formula synthesis problem as a Boolean satisfiability
problem and then uses an off-the-shelf SAT solver to solve
that problem. Because such SAT-based approach does not scale
well, the authors then develop a second method based on
decision tree learning where the SAT-based method is used
as an oracle to generate predicates for the decision tree. More
recently, Riener [21] improves on Neider and Gavran’s SAT-
based method by precomputing models for shape constraints
required by the original method. The approaches followed in
these works are not directly applicable to attack signature
generation due to one or more of the following reasons:
(1) they consider samples with infinite traces only; (2) they
synthesize LTL formulas containing only future temporal
operators, which are not necessarily monitorable at runtime;
(3) they impose certain shape restrictions on the synthesized
formula which lead to lengthy formulas.

Exploring possible approaches. Since the prior methods
above [5], [21] are not directly applicable to our problem
domain, we started by first adapting them to the synthesis
of PLTL formulas from finite traces. In our evaluation, we
observed that they either do not scale or do not yield succinct
formulas. We then tried to reduce the synthesis problem to a
Satisfiability Modulo Theory (SMT) problem where the PLTL
syntax is encoded as an algebraic data-type (ADT) and the
formula to synthesize is represented by a free variable f
with that type. We encoded the requirements of acceptance
of the positive traces and rejection of the negative traces
as constraints on f and used an SMT solver with finite
model finding capabilities [22], [23] to obtain models of the
ADT problem. Such models assign to f a datatype value
representing a candidate solution to the synthesis problem.
Unfortunately, this SMT-based approach is not scalable either,
which prompted us to consider an encoding of our synthesis
problem as a Syntax-Guided Synthesis (SyGuS) problem [24]
over ADTs. Similarly to previous approach, however, the
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SyGuS approach proved to be not scalable. The main reason in
both cases seems to be that ADTs are user-defined and hence
do not benefit from the sort of specialized optimizations that
SMT solvers employ for other builtin theories.
Our approach. This brings us to our final approach in which
we encode the problem as a SyGuS problem with fixed-size
bit-vectors and use a specific SyGuS engine [25] to solve it.
In our encoding, we view the projection of a trace of length
n over a propositional variable as a bit-vector of size n and
then lift the semantics of logical and past temporal connectives
to operate over bit-vectors. Such an encoding has the follow-
ing advantages: (1) since fixed-size bit-vectors are natively
supported by the SyGuS solver, we benefit from the solver’s
various optimization techniques (e.g., rewrite rules) for them;
(2) restrictions on the shape of the formula to be learned can be
readily added as syntactic constraints on the SyGuS problem;
(3) semantics constraints capturing the formula’s consistency
with sample traces can be efficiently evaluated through direct
bit-vector operations on whole traces, unlike prior approaches
which operate on each individual state in a trace; (4) with
an appropriate term enumeration strategy within the SyGuS
solver, it is possible to obtain candidate formulas of minimal
size together with other candidates; (5) thanks to the SyGuS
solver’s symmetry breaking criteria (i.e.,, agreement over the
sample traces), our approach can enumerate different shapes
of formulas while maintaining scalability.
Implementation and evaluation. We have implemented our
approach in a novel tool called SYSLITE1 which uses the
CVC4SY SyGuS engine [25]. We also adapted to our setting
and implemented the prior methods [5], [21] mentioned earlier
and considered them as baselines in our experiments. We
evaluated the various approaches based on their scalability and
ability to synthesize succinct PLTL formulas.

To verify the generality of our SyGuS approach, in a first
case study, we collected a number of PLTL formulas from the
literature and considered the behavior they represent as our
learning target. For each target formula, we generated random
traces and classified them as positive or negative based on
whether they satisfied or falsified the formula. We then fed
a subset of these classified random traces to both SYSLITE
and our implementation of the baseline approaches, and com-
pared the synthesized formulas with the corresponding target
formulas. We observed that SYSLITE exhibits an average
60x speedup over the baseline while synthesizing a formula
logically equivalent to the target formula in most cases.

In a second case study, we used real-world cellular network
traces for 11 known attacks [6], [16]–[20]. We observed that
SYSLITE can learn the attack signatures 28x times faster on
average than the baseline while still being able to generate
succinct attack signatures.
Contributions. To summarize, this paper makes the following
technical contributions:

1) We explored a number of possible approaches for PLTL
formula learning from samples, including extensions of

1SYSLITE is available at https://github.com/CLC-UIowa/SySLite.

prior SAT-based approaches originally applied to learning
LTL formulas with future operators only. Our empirical
evaluation show that none of these approaches scale to
realistic trace lengths and numbers of input traces.

2) We propose a new, more scalable learning approach
which formulates the learning problem as a SyGuS prob-
lem and relies on a high-performance SyGuS engine to
generate candidate solutions. Our encoding uses the the-
ory of fixed-size bit-vectors which is natively supported
by the underlying SyGuS solver, enabling us to benefit
from several specific optimizations.

3) Our PLTL formula learning approach is implemented in
a new tool, SYSLITE, which uses the CVC4SY SyGuS
engine as a backend. We have empirically evaluated its
efficacy on two case studies while considering previous
state-of-the-art methods as baselines. The case studies
show that SYSLITE on-average enjoys a 44x speed-up
over the baselines while, at the same time, being able to
learn the expected behavior in almost all cases.

II. TECHNICAL PRELIMINARIES

Many-Sorted First-Order Logic. We rely on the usual no-
tions and terminology of many-sorted first-order logic with
equality ('). We assume the usual definitions of signature,
well-sorted terms, literals, and formulas [26]. A theory is a
pair T = (Σ, I) where Σ is a signature and I is a non-empty
class of Σ-interpretations, the models of T , that is closed under
variable reassignment and isomorphism. A Σ-formula ϕ is T -
satisfiable (respectively, T -unsatisfiable) if it is satisfied by
some (resp., no) interpretation in I . A satisfying interpretation
for ϕ, models ϕ. A formula ϕ is valid in T (or, T -valid),
written |=T ϕ, if every model of T is a model of ϕ.

Theory of Fixed-size bit-vectors. The theory TBV =
(ΣBV, IBV) of fixed-size bit-vectors as defined in the SMT-
LIB 2 standard [27] consists of the class of interpretations
IBV and signature ΣBV, which includes a unique sort for
each positive integer n, representing the bit-vector width. We
assume that ΣBV includes all bit-vector constants for each n,
represented here as bit-strings or, to simplify the notation, by
the corresponding natural number in {0, . . . , 2n−1}. We write
a ΣBV-term (or, bit-vector term) t of width n as t[n] when
we want to specify its bit-width explicitly. We refer to the
i-th bit of t[n] as t[i] with 0 ≤ i < n. We consider t[0] as
the least significant bit, and t[n − 1] as the most significant
bit of t, and denote the subvector of t from index j down to
i as t[j : i]. We will use the following arithmetic bit-vector
operators: addition (+), arithmetic negation (−), and unsigned
shift to the left (<<), as well as the following bitwise operators:
logical negation (∼), conjunction (&), and disjunction (|).
SyGuS Problem. A SyGuS problem for a function f in a
theory T consists of (1) semantic restrictions, or a specifica-
tion, given by a (second-order) T -formula of the form ∃f. ϕ,
and (2) syntactic restrictions on the definitions for f , given
by a context-free grammar R. A solution for f is a lambda
term λx. e of the same type as f , such that (i) the formula
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ϕ{f 7→ λx. e} is T -valid (modulo beta-reductions) and (ii)
the term e is in the language generated by R.

Past-Time Propositional Linear Temporal Logic (PLTL).
The formulas we learn are of the form f Φ where Φ is a
PLTL formula and f is a future temporal operator over finite
traces (discussed below).

Definition 1 (Syntax). The set of well-formed PLTL formulas,
denoted as Φ and Ψ, is generated by the following grammar:

Φ,Ψ ::= > | ⊥ | p | ◦1 Φ | Φ ◦2 Ψ

where p belongs to a non-empty set, or alphabet, A of proposi-
tional variables, ◦1 ∈ {¬,,,}, and ◦2 ∈ {∧,∨, S }. A
core formula is a formula that does not contain the operators
∨, , and . The size of a formula Φ, denoted with |Φ|, is
the number of its proper subformulas.

Informally, > and ⊥ are the universally true and the
universally false formulas, respectively, and ∧,∨, and ¬ are
the usual Booleans operators. On the other hand, ,,,
and S are past temporal operators, respectively read as “yes-
terday”, “once”, “historically”, and “since. Unary operators
have a higher precedence than binary operators, and temporal
operators have a higher precedence than logical operators.

We fix an alphabet A for the PLTL formulas in the rest of
the paper. The standard PLTL semantics is defined over infinite
traces in a Kripke structure [28]. For our purposes, however,
it is more useful to define a semantics of PLTL over finite
traces. A finite trace σ (of length n ∈ N over A) is a sequence
(σ0, . . . , σn−1) of states where a state is a total mapping from
A to the set {t, f} of Boolean values. Let σ = (σ0, . . . , σn−1)
be a trace of length n. For a propositional variable p ∈ A and
we denote by σ(p) the projection of σ over p, that is, the
sequence of Boolean values (σ0(p), . . . , σn−1(p)).

Definition 2 (Semantics). The semantics of PLTL is provided
by a ternary satisfiability relation |= defined inductively over
core PLTL formulas as follows for all finite traces σ =
(σ0, . . . , σn−1) and positions i ∈ [0, n− 1].
• σ, i |= >
• σ, i |= p if σi(p) = t
• σ, i |= ¬Φ if (σ, i) 6|= Φ
• σ, i |= Φ ∧Ψ if (σ, i) |= Φ and (σ, i) |= Ψ
• σ, i |= Φ if i > 0 and (σ, i− 1) |= Φ
• σ, i |= ΦS Ψ if there is an j ∈ [0, i] such that (σ, j) |= Ψ

and (σ, k) |= Φ for all k ∈ [j + 1, i].

This semantics is extended to the full language of PLTL by
treating the additional operators as syntactic sugar according
to the following equivalences: ⊥ ≡ ¬>; Φ∨Ψ ≡ ¬(¬Φ∧¬Ψ);
Φ ≡ >S Φ; Φ ≡ ¬¬Φ. We write σ |= Φ as a short-
hand for σ, 0 |= Φ. Finally, we write σ |= fΦ to indicate
that σ, i |= Φ for all i ∈ [0, n−1] where n is the length of σ.

III. PROBLEM DEFINITION AND POSSIBLE APPROACHES

In this section, we formalize the problem of PLTL formula
synthesis from finite samples and discuss potential but inef-

ficient approaches for solving it. We start by introducing the
auxiliary notion of consistency used in our problem definition.

Definition 3 (Consistency). A PLTL formula Φ is consistent
with a finite sample D = (P,N ) of positive finite traces P
and negative finite traces N with P ∩ N = ∅ if and only if
the following two conditions hold.

1) σ+ |= fΦ for all traces σ+ ∈ P .
2) σ− 6|= fΦ for all traces σ− ∈ N .

A formula Φ consistent with D is minimal if no PLTL
formula Ψ with |Ψ| < |Φ| is consistent with D.

Problem Definition 1 (PLTL Formula Synthesis from Finite
Samples). The PLTL formula synthesis problem for a given
sample D = (P,N ) is the problem of finding one or more
PLTL formulas Φ that are consistent with D.

A. Possible Approaches

We considered several natural approaches to the PLTL
synthesis problem. Unfortunately, our experimental evaluation
revealed that they do not scale well. It is, however, valuable to
discuss them here because their weaknesses point to potential
performance bottlenecks which any synthesis algorithm must
overcome to be effective in practice. We describe a better
approach in Section IV.

SAT-based Approaches. We adapted to our context prior SAT-
based approaches for learning LTL formulas from samples
containing only infinite traces [5], [21]. These approaches
look for formulas of increasing size, measured as the depth
of the formula’s abstract syntax tree (AST) which, in essence,
guarantees the identification of minimal formulas consistent
with a given sample D. As in the approach by Neider and
Gavran [5], for a given depth d, the PLTL formula synthesis
problem can be posed as the problem of checking the satisfi-
ability of a formula γd of propositional logic. The reduction
is meant to be such that, γd is satisfiable exactly when the
original synthesis problem is solvable. Moreover, it is possible
to construct a PLTL solution to the synthesis problem from
any propositional model of γd. The formula γd has the form
γdsyn∧γdsem where γdsyn tries to captures syntactic restrictions on
the expected solution (a well-formed PLTL formula with depth
d) whereas γdsem captures the semantic restriction that the
extracted solution is consistent with the sample.2 In turn, γdsyn
has the form γdshape∧γdlabel where models of γdshape determine
possible AST shapes of depth d (including some infeasible
ones) and models of γdlabel assign labels (i.e.,, propositions,
logical or temporal operators) to the AST nodes. To identify
different feasible formulas, this SAT-based approach can be
executed in enumerative mode by blocking a returned model
of γd and reissuing a call to the SAT solver with γd as well
as the blocking formula. Similarly to the original work, this
approach does not scale to realistically sized traces or large
numbers of them, as we discuss in our evaluation section.

2In practice, models of γdsyn can lead to an overabundance of PLTL
solutions since the syntactic restrictions are not strong enough to rule out
certain redundancies. Thus, some a posteriori filtering is required.



Riener [21] improved on Neider and Gavran’s work by
precomputing the models of the formula γdshape for a given
depth d and supplying them with the rest of the formulas in
γd, in effect trading off input size for execution time. The
improved method essentially breaks a number of symmetries,
greatly reducing the number of solutions that differ in an
insignificant way from each other. It can generate stronger
syntactic restrictions by relying on an underlying representa-
tion based on chains instead of directed acyclic graphs as in
Neider and Gavran. We adapted the method to our context but
observed that scalability issues persist, especially, when the
alphabet size is larger than 3.

Finally, we also considered a second approach by Neider
and Gavran [5] which combines a classical decision tree
learning algorithm with their SAT-based approach. In a first
phase, the SAT-based algorithm is executed over k positive and
k negative traces to obtain a candidate formula. The approach
keeps choosing randomly from 2k traces until all the example
traces can be separated or a timeout is reached. At that point, it
invokes the decision tree learning algorithm which essentially
uses the candidate formulas generated in the first phase as
possible predicates for the decision tree. Because the decision
tree learning algorithm combines these predicates into if-then-
else clauses, it only applies to logical languages that are closed
under negation. Unfortunately, the presence of the outermost
f operator in our PLTL fragment of interest, makes this
fragment not closed under negation and hence this second
approach is not applicable to our case.

SMT-based Approach. One of the scalability challenges
of SAT-based algorithms can be attributed to the inefficient
enumeration of the well-formed PLTL formulas. This is par-
ticularly apparent in the approach of Riener [21] who attempts
to address this challenge through precomputation. A natural
potential solution is to move to an SMT-based approach where
the formula to be synthesized is a value of an algebraic data
type (ADT) ∆ that captures the abstract syntax of well-formed
PLTL formulas directly. Each PLTL propositional constant and
(logical and temporal) operator is modeled by a corresponding
constructor of ∆ with the same arity. Traces can be encoded as
(partially defined) Boolean maps from propositional constants
and trace positions. The PLTL semantics is captured by an
evaluation function, a recursively defined total function that
takes a trace t and a data type d as input and returns true
if and only if t satisfies the formula represented by d. The
synthesis problem is then encoded by a set of constraints on
a fresh constant ϕ of type ∆, standing for the formula to be
synthesized, stating that the evaluation of ϕ is true for all the
positive traces and false for all the negative ones. Synthesizing
the PLTL formula thus reduces to asking the SMT solver
to find a model of the ADT problem. If it succeeds, the
ADT value assigned to ϕ describes a possible solution. In our
evaluation, we observed that such an approach is unfortunately
also not scalable, possibly due to the inherent complexity of
solving SMT problems over ADTs.

SyGuS-based Approach. We explored next a SyGuS-based

approach where the PLTL syntax is encoded as a context-
free grammar whereas the consistency with the sample set is
given as the specification. Although more scalable than the
SMT-based one, this approach is still not sufficiently scalable
for our case studies. An analysis of our SyGuS encoding
revealed the following two weaknesses whose mitigation led
us to our final approach, discussed in the next section. First,
since algebraic data types are user-defined, reasoning about
them does not benefit from the specialized optimizations (e.g.,,
rewrite rules, symmetry breaking) available to SMT solvers
for other builtin theories such as bit-vectors or linear integer
arithmetic. Second, both this and the SMT-based approach
require evaluating a candidate solution at each position of
each trace in order to guarantee consistency with the sample.
Expressing such a constraint requires the use of quantified
formulas (with quantification over traces and positions) and
recursive function definitions (for the evaluation function) both
of which are expensive to reason about.

B. Lessons learned

After analyzing the different approaches above to the PLTL
synthesis problem, we identified the following performance
bottlenecks, which we tried to address in our final approach.
First, the SAT-based approaches produce constraints with a
lot of symmetries and hence many redundant solutions, a
substantial bottleneck. Except for the SyGus-based approach,
none of these approches apply symmetry breaking optimiza-
tions to rule out or reduce the generation of formulas similar
to previously generated ones, substantially hampering the
generation of truly diverse PLTL formulas consistent with the
input sample. Finally, all the approaches attempt to achieve
sample-consistency through (quantified or explicit) constraints
on individual trace positions, thus missing out on full-trace-
level optimizations, which are crucial to scalability.

Examples of our SMT-based and SyGuS-based encodings
can be found in the longer version of this paper [29].

IV. PLTL SYNTHESIS WITH SYGUS

In this section, we present an efficient approach for synthe-
sizing a PLTL formula consistent with a finite sample D using
a SyGuS solver over the theory of fixed-sized bit-vectors. It
relies on the observation that a PLTL formula over finite traces
of length at most n can be encoded as a function over bit-
vectors of size n. Thus, the problem of synthesizing a PLTL
formula is reduced to the synthesis of a bit-vector function.

Similarly to a bit-vector encoding presented by Baresi et
al. [30], we use bit-vectors of size n > 0 to represent the
truth values of PLTL formulae at positions [0, n−1] of a given
trace of length n. More precisely, for each atomic proposition
p ∈ A, we use a bit-vector variable ←−p [n] such that ←−p [n][i]
captures the value of proposition p at all instants i from 0 to
n−1. The bit-vector representation of ⊥ for length n, denoted
with

←−
⊥ [n], is the bit-vector constant 0 of size n, while the bit-

vector representation of >, denoted with
←−
> [n], is the value

of ∼
←−
⊥ [n]. For any other PLTL formula Φ, we describe the

value of Φ at positions 0 through n − 1 in a trace by the



bit-vector obtained by recursively performing operations on
the bit-vectors corresponding to the sub-formulas of Φ. The
operations performed depend on the structure of Φ and follow
the transformations shown in Table I.

TABLE I. Translation of a PLTL formulas to bit-vector
terms.

Φ
←−
Φ unfolded bit-vector encoding

¬Ψ ∼
←−
Ψ ∼

←−
Ψ

Ψ1 ∧Ψ2
←−
Ψ1 &

←−
Ψ2

←−
Ψ1 &

←−
Ψ2

Ψ1 ∨Ψ2
←−
Ψ1 |

←−
Ψ2

←−
Ψ1 |

←−
Ψ2

Ψ 
←−
Ψ <<

←−
Ψ

Ψ 
←−
Ψ −

←−
Ψ |
←−
Ψ

Ψ 
←−
Ψ ∼(1 +

←−
Ψ) &

←−
Ψ

Ψ1 S Ψ2
←−
Ψ1
←−
S
←−
Ψ2

←−
Ψ2 | (∼((

←−
Ψ1 |

←−
Ψ2) +

←−
Ψ2) &

←−
Ψ1)

Table I also introduces new bit-vector operators, ,,,
and
←−
S denoting, respectively, the bit-vector encodings for

the temporal operators ,,, and S . To establish the
correctness of the connection between the bit-vector encoding
and the semantics of PLTL (see Theorem 1) and to explain
the example we use the following notation: for a propositional
variable p ∈ A and a trace σ of length n,

←−−
σ(p) denotes the

bit-vector representation of σ(p), that is, for all i ∈ [0, n− 1],←−−
σ(p)[i] = 1 if σi(p) = t, and

←−−
σ(p)[i] = 0 if σi(p) = f .

To see more concretely how the translation works we
explain, for instance, the correspondence between the unary
PLTL operator  (read: true at least once in the present or
past) and its bit-vector counterpart  with an example.

Example 1. Let σ be a trace of length 6 where propositional
variable p is true only at positions 3 and 4. The projection
σ(p) is represented by the bit vector 011000 with the most
significant (i.e.,, leftmost) bit corresponding to σ5(p), the next
most significant bit corresponding to σ4(p), and so on. So←−−
σ(p) = 011000. Intuitively, the valuation ofp over σ should
then be represented by the bit-vector 111000. To verify that let
←−p [6] be the bit-vector variable corresponding to p. According
to our translation,

←−
p = (←−p ) = −←−p | ←−p = −←−p [6] | ←−p [6]

where | is bitwise disjunction and − is arithmetic negation
(two’s complement). If we evaluate the resulting bit-vector
term with the valuation α = {←−p [6] 7→ 011000} we get

α(−←−p [6] | ←−p [6]) = −011000 | 011000
= 101000 | 011000 = 111000

as expected.

Theorem 1. Let Φ be a PLTL formula over the alphabet A =
{p1, . . . , pm} and let σ be a trace of length n over A. Then,

σ |= fΦ iff |=TBV

←−
Φ {p̄ 7→ σ̄} '

←−
> [n]

where p̄ = (←−p1[n], . . . ,←−pm[n]) and σ̄ = (
←−−−
σ(p1), . . . ,

←−−−
σ(pm)).

Proof. By induction on the structure of Φ. See Arif et al. [29]
for a full proof.

We now describe how we use the bit-vector encoding
above to reduce the problem of synthesizing a PLTL formula
consistent with a sample into a SyGuS problem over bit-
vectors. More precisely, given propositional variables pi ∈ A,
with 1 ≤ i ≤ m, and a sample D = (P,N ) whose longest
trace has length n, we seek to synthesize a bit-vector function
f(←−p1[n], . . . ,←−pm[n]) such that if λ←−p1[n], . . . , λ←−pm[n]. e is a
solution for the SyGuS problem, then there exists a PLTL
formula Φ consistent with D whose bit-vector encoding is e
(that is,

←−
Φ = e).

To meet the requirements on f , we start by imposing the
syntactic restrictions expressed by this context-free grammar:

Ψ ::=
←−
> [n] |

←−
⊥ [n] | ←−p [n] | ◦1 Ψ | Ψ ◦2 Ψ

where ←−p is ←−pj [n] for some j ∈ [0,m], ◦1 ∈ {∼,,,}
are the unary operators, and ◦2 ∈ {&, |,

←−
S } are the binary

operators. Notice that, although ,,, and
←−
S do not

belong to the theory of bit-vectors, they can be defined using
a bit-vector function in the SyGuS problem (see Table I).

In addition, the function f is subject to the following
semantic restrictions where |σ| denotes the length of trace σ:

1)
∧
σ∈P

f(
←−−−
σ(p1), . . . ,

←−−−
σ(pm))[|σ| − 1 : 0] '

←−
> [n][|σ| − 1 : 0]

2)
∧
σ∈N

f(
←−−−
σ(p1), . . . ,

←−−−
σ(pm))[|σ| − 1 : 0] 6'

←−
> [n][|σ| − 1 : 0]

The two constraints enforce the consistency of the solution
respectively with the positive traces and the negative traces.
Notice that, since an input may include traces of different
length, we compare only the relevant positions for each trace.

V. IMPLEMENTATION AND EVALUATION OF SYSLITE

In this section, we discuss the implementation of SYSLITE
and our empirical evaluation of it based on two case studies.

A. SYSLITE Implementation

SYSLITE is a wrapper around the syntax-guided synthesis
solver CVC4SY which is part of the SMT solver CVC4 [31] and
now incorporates additional optimizations for PLTL synthesis.
CVC4SY supports various theories, including that of fixed-
size bit-vectors, used in our encoding, and implements several
specialized synthesis algorithms for various types of synthesis
conjectures [32]. We rely on its support for enumerative
counterexample-guided inductive synthesis (CEGIS) which
was recently improved with several novel strategies [33].

In enumerative CEGIS [34], candidate solutions are gener-
ated based on some ordering, typically on term size. In our
setting, a candidate solution is a function whose definition
involves the bit-vector symbols from Section IV. CVC4SY
uses advanced techniques to aggressively reduce the number
of candidate solutions it generates. In particular, it uses fast
incomplete techniques based on term rewriting to avoid gen-
erating candidate solutions s′ that are logically equivalent to
some previous candidate s. This form of symmetry breaking,
is critical for the scalability of enumerative approaches [32].
Our encoding of PLTL formulas as bit-vector constraints



was motivated by the intention to capitalize on CVC4SY’s
infrastructure for establishing the equivalence of bit-vector
terms developed to accelerate SyGuS enumeration [35].

For synthesis conjectures (i.e.,, semantic restrictions) ∃f. ϕ
where all applications of f in ϕ have concrete values as
arguments, CVC4SY can apply a stronger version of symmetry
breaking that considers equivalence under examples. Suppose
the concrete inputs for f in ϕ are c1, . . . , cn. Using this
technique, while constructing a new candidate solution for f ,
the solver disregards any term t′ that over the inputs c1, . . . , cn
evaluates exactly as some previously disregarded term t. For
example, the terms x & y and x take the same value over
the inputs (0001, 0001), (0000, 0001), (1010, 1110) for (x, y).
Hence, one of them (x &y, due to its larger size) will be
excluded from consideration in candidate solutions since it
is equivalent to x for all relevant inputs as specified in the
conjecture. In practice, this heuristic is traditionally applied
when the synthesis conjecture specifies a set of input/output
pairs for the function f to synthesize (with constraints of the
form f(ci) = oi). We have generalized symmetry breaking
in CVC4SY to apply the heuristics to any conjecture ∃f. ϕ
where f is applied to concrete inputs, even when ϕ is not
just a conjunction of input/output constraints. In our specific
context, this enables symmetry breaking constraints for the
negative traces, and also allows us to have traces of different
length in the same problem.

Since the evaluation of terms on concrete examples is a
major bottleneck in syntax-guided synthesis solvers, we have
additionally implemented in CVC4SY several low-level opti-
mizations for quickly computing the result of PLTL terms on
concrete inputs. Thanks to our encoding of PLTL formulas as
bit-vector constraints, we can capitalize on the data structures
in the core of CVC4 for representing and efficiently evaluating
bit-vectors terms. Our experiments confirm that this is critical
to achieving scalability for the synthesis tasks in question.

The enumeration strategy itself (by formula size) remains
a major bottleneck in our approach when behavior consistent
with the training set cannot be captured by a small formula.
In contrast, capturing behavior that spans distant states on a
trace is not, per se, problematic because evaluation times for
a given candidate solution grow linearly with trace length.

B. Empirical Analysis Criteria and Configuration

Research questions. In our evaluation of SYSLITE, we aimed
to answer two research questions. Compared to a baseline:
RQ1. How effective is SYSLITE in synthesizing succinct,

diverse, and accurate PLTL formulas?
RQ2. How scalable is SYSLITE?
Case studies. We address the above questions in the context
of the two case studies presented in Sections V-C and V-D,
respectively. The first focuses on RQ1 whereas the second
focuses on RQ2 based on SYSLITE’s ability to synthesize
attack signatures from real cellular network traces.

Baseline. We compare SYSLITE against a baseline represented
by our own implementation of the (first) SAT-based method

by Neider and Gavran [5]. We use our own implementation
and not theirs because the latter applies to traditional LTL, as
opposed to PLTL. We do not discuss here the other approaches
we tried, that is, Reiner’s SAT-based approach [21], our
encodings to algebraic data types, as well as DFA learning
approaches, specifically, RPNI [36], since they proved either
not scalable or ineffective. We point out that, in the second
case study (V-D), the passive DFA learning approach does
scale significantly better than SYSLITE with trace length and
number of traces. However, the produced signatures are of
significantly worse quality in all considered benchmarks (e.g.,
have F1 score as low as 0.35 for RLF report attack). Moreover,
the quality of the DFA signatures does not necessarily improve
with a larger set of traces or longer traces over the signa-
tures produced by SYSLITE. In other words, SYSLITE can
learn better quality signatures with fewer and shorter traces.
Furthermore, recall that in this case study the objective is to
generate attack monitors that execute on a mobile phone. A
PLTL formula of size n can be monitored with just 2n bits
of memory [8]. In contrast, the learned DFA equivalent to a
PLTL formula can have O(2n) states [37]–[39]. The memory
footprint of such a high number of states per signature makes
DFA-based monitors infeasible in practice, especially, when
many attacks are being monitored at the same time.

Sample sizes. For both of our case studies, we considered
sample sizes 50, 100, 250, 500, and 1250. For Case Study I,
traces were generated randomly and have length 10 whereas
for Case Study II the traces were collected from a cellular
network and have length 100. We chose on purpose data sets
with an equal number of positive and negative traces. An
imbalanced dataset, due for example to an uneven distribution
of positive and negative traces for the target behavior (which
we did observe in some of the benchmarks), can negatively
impact the quality of the synthesized formula by not restricting
the search space enough to learn the desired behavior early
in the search. Oversampling, on the other hand, does not
impact the quality of the synthesized formula, although it can
obviously impact training time.

Training and testing configuration. We used the standard
Pareto-principle of classifier evaluation which suggests an
(80%, 20%) partition of the provided sample set into training
and testing datasets, respectively. By considering a synthesized
PLTL formula Φ as a classifier for the traces in the testing
set, its quality can be measured in terms of precision (the
percentage of correctly classified traces among all traces
classified as positive by Φ), recall (the ratio of correctly
classified positive traces over the total number of positive
traces) and their harmonic mean (F1 score). Moreover, the
evaluation method also performs cross-validation. It considers
the first five solutions generated by SYSLITE and by the
baseline, selecting the formula (or formulas, in case of ties)
with the highest F1 score.

In Case Study I, one could imagine directly comparing the
closeness of a synthesized formula to the target formula, for
instance by considering the Jaccard distance of the sets of



satisfying traces, up to some fixed length n, for each formula.
We did not do it since it is prohibitively expensive for requiring
the enumeration of all such traces. A better approach might be
to estimate closeness by adapting model counting techniques
to this setting, something we leave to future work.

Evaluation infrastructure. We performed all our evaluations
on a 3.40GHz Intel(R) Xeon(R) E3-1240 CPU running Cen-
tOS (Linux Kernel 3.10.0-1062.9.1) on 16GB RAM. We set a
3600 second timeout for each learning task.

C. Case Study I: PLTL Formulae from Literature

The purpose of this case study was to measure SYSLITE’s
effectiveness in synthesizing succinct and accurate formulas
from a sample set of traces. For this, we first collected a
few representative PLTL formulas from the literature (see
Table II). For each of them, we collected a sample consisting
of randomly generated traces and then checked if SYSLITE
and the baseline were able to learn the original formula or
a logically equivalent one. We had both synthesis approaches
generate up to 5 candidate formulas before a given timeout.

TABLE II. target formulas from the literature.
Literature Formula PLTL Formula

Chinese Wall Policy [11] f ((access org1 records⇒ ¬(access org2 records)) ∧
(access org2 records⇒ ¬(access org1 records)))

Bank Transaction Policy [11] f (Transaction over threshold performed⇒
(Transaction over threshold approved))

Secure File [11] f ((secure file open⇒ (((¬(secure file open))) ∨
(¬secure file openS secure file closed))))

Financial Institute Policy [11] f (grant⇒ (¬grantS request))

GLBA-6802 [12], [15] f (institution discloses to affiliate customers npi⇒
(¬customer opt outS notice of disclosure))

HIPPA-164508A2 [12], [15]
f (covered entity discloses patient psych notes⇒

(¬authorization psych notes revoked)S
receive patient authorization psych notes)

HIPPA-164508A3 [12], [15] f (covered entity discloses patient info for marketing⇒
(receive patient authorization marketing))

Dynamic Separ. of Duty [11]
f (member activates role1⇒

(((¬member activates role2)) ∨
(¬member activates role2Smember deactivates role2)))

Trace generation: Given a target formula ϕ from Table II,
a desired trace length `, and a desired sample size 2n,
our trace generation process uses a cryptographically-secure
pseudorandom number generator to produce a sample set P
of n positive traces and a sample set N of n negative traces,
all of length `. It generates a trace σ of length ` by randomly
assigning truth values to ϕ’s propositional variables for each of
the ` states of σ. The trace goes in the set P or N depending
on whether it satisfies ϕ or not, as long as the set in question
contains less than n traces; otherwise, it is discarded. Note
that, depending on the target formula ϕ, we may have to
oversample for positive or negative traces.

Measuring quality of synthesized formulas. To evaluate the
quality of the synthesized formulas, in addition to relying on
the usual statistical measures (i.e., precision, recall, and F1
score) on the test dataset, we considered logical equivalence
with the target formula (i.e., being satisfied by exactly the same
set of possible traces) as another metric of effectiveness. We
used the GOAL tool [40] to check for equivalence in PLTL.

Quality of synthesized formulas. Our results on the synthe-
sized formulas’ quality (i.e., equivalence to target formula) and
count are summarized in Table III. For each run of SYSLITE

TABLE III. Case Study I: Quality of Synthesis Methods.
SYSLITE SAT

target Formula Count Quality Count Quality
Chinese Wall Policy [11] 5/5 1/5 4/5 0/5
Bank Transaction Policy [11] 5/5 5/5 4/5 4/5
Secure File [11] 5/5 5/5 0/5 0/5
Financial Institute [11] 5/5 5/5 2/5 1/5
GLBA-6802 [12], [15] 5/5 5/5 1/5 2/5
HIPPA-164508A2 [12], [15] 5/5 5/5 1/5 0/5
HIPPA-164508A3 [12], [15] 5/5 5/5 4/5 4/5
Dynamic Separation of Duty [11] 2/5 0/5 2/5 0/5

Total: 37/40 (92%) 31/40 (76%) 18/40 (45%) 11/40 (27%)

and the baseline for a particular dataset and a target formula,
we select the highest-ranked formula after cross validation3

among those synthesized in the allotted time, if any. For each
original (target) formula, column Count reports the total of
number selected formulas across the 5 training sets of different
size. For instance, a value of 2/5 indicates that the algorithm
was able to synthesize formulas for 2 of the 5 training sets.
Column Quality reports how many of the selected formulas
are logically equivalent to the target formula.

Our evaluation confirms that SYSLITE can learn the target
formula or an equivalent one for each of the five random
sample sets in almost all cases. The only exceptions are the
Dynamic Separation of Duty formula, for which SYSLITE
generates two formulas neither of which is equivalent to the
target formula, and the Chinese Wall Policy formula, for which
it generates one formula and only for the sample set of size
1250. To put things in perspective, however, note that since
the Chinese Wall Policy formula has two variables and traces
have length 10, a set of 1250 traces covers just 0.1% of the
set of all possible 410 traces. Remarkably, SYSLITE is able to
learn the right formula with much smaller sample sets in all
the other cases, with perfect precision, recall, and F1 scores.

Looking at the baseline approach, it performs gracefully
with a few simple target formulas such as Bank Transaction
Policy and HIPAA-164508A3. However, it cannot synthesize
any candidates for the Secure File target formula. Moreover,
its synthesized formulas for HIPPA-164508A2, Dynamic Sep-
aration of Duty, and Chinese Wall Policy are not equivalent
to the target. See Arif et al. [29] for detailed results.

Scalability. The training results for case study I are shown
in Figure 1. The X-axis of the graph represents the different
training set sizes: 80% of 50, 100, 250, 500, and 1250,
while the Y-axis (in log-scale) represents the training time in
seconds. Cross validation times are not shown because they are
uniform and negligible. The horizontal red line on the top of
the graph represents the timeout (3600 seconds). In the graph,
we only show results for the 3 target formulas for which the
SAT-method performs best. See [29] for complete results.

In our evaluation, SYSLITE was able to generate results
for almost all combinations of target formula and training
set size while exhibiting an average 60x speedup over the
baseline. The exception, already mentioned, is the Dynamic
Separation of Duty formula where it timed-out on the training
sets with more than 100 traces. This is likely due to the
large size of the formulas to be synthesized which requires

3In this case study, we did not observe any ties after cross-validation.
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Fig. 1. Training Results of Case Study I.

SYSLITE to enumerate internally a very large number of terms.
The baseline method was unable to generate any formula and
timed-out, even for the smallest sample (of 50 traces) for the
Secure File formula. For a few of the other target formulas, it
failed to synthesize a candidate even for the small sample sets
(of size 50 and 100). For example, in HIPPA-164508A2 policy
it failed to synthesize any formula for sample size larger than
50 traces; for the Dynamic Separation of Duty and Financial
Institute it was unable to deal with sample sets with more than
100 traces. These scalability problems are the main cause of
its low formula-quality scores (shown in Table III) and low
statistical measures scores (not shown).

D. Case Study II: 4G LTE Attack Signature Generation

Our second case study focused on synthesizing attack
signatures, represented as PLTL formulas, for cellular net-
works from a set of benign (i.e., positive) and attack (i.e.,
negative) traces. Once again, we considered the scalability and
effectiveness of SYSLITE versus the SAT-based baseline. The
choice of this application domain was motivated by the vital
role cellular networks play in a modern nation’s infrastructure,
which makes them a frequent target for malicious attacks [6],
[16]–[18], [41], [42].

As with any protocol, the cellular network protocol allows
only specific orderings of messages (packets) sent or received
by a cellular device, and predicates over their payload (e.g., the
sequence number is in a range). For a given type of attack,
the synthesized attack signature is expected to be satisfied,
ideally, by all and only the benign protocol executions, those
not containing an attack. This way, one can deploy a runtime
monitor [43] for each attack type that checks whether the
current execution violates (i.e., falsifies) the attack signature
and issues an alert as soon as it detects a violation. Cur-
rently, there are no mechanisms that can achieve this goal

TABLE IV. Table summarizing the attacks used for
evaluation of 4G LTE Attack Signature Generation.

( = NAS Protocol Layer, # = RRC Protocol Layer)

Name of Attack SYSLITE-synthesized Attack Signature PL

Numb Attack [6] f (authentication reject⇒
(authentication response))

 

Authentication Failure [6] f (¬(authentication failure))  
IMSI Cracking Attack
Against 4G [16] f (¬(paging IMSI and TMSI))  

IMSI Catching [16] f (¬(identity request IMSI))  

Measurement Report [17]
f (measurementReport⇒

(¬(rrcConnectionSetup)S
securityModeComplete))

#

RLF Report [17]
f (ueInformationResponse⇒

(¬(rrcConnectionRequest)S
securityModeCommand))

#

AKA Bypass Attack [18]
f (rrcConnectionReconfiguration⇒

(¬(rrcConnectionSetupComplete)S
securityModeCommand))

#

Malformed Identity
Request [19] f (¬(identity request malformed))  

Null Encryption
Chosen by MME f (¬(MME null encryption chosen))  

EMM Information
Spoofing [20] f (¬(emm information insecure)) #

Paging with IMSI [16] f (¬(paging IMSI ∨
paging IMSI and TMSI))

 

efficiently. Being able to automatically synthesize effective
attack signatures is the natural first step towards that. In light
of this, our case study focused on 11 known, representative
attacks that are detectable from the vantage point of a cellular
device (see Table IV). These attacks target weaknesses of the
cellular network protocol in the Non-Access Stratum (NAS)
layer, responsible for communication between a cellular device
and the core network, and the Radio Resource Control (RRC)
layer, responsible for the communication between a device and
the base station [6], [16]–[20]. While other attacks exist [7],
[16]–[18], [44]–[51], they are not detectable from a device’s
point of view and thus are not relevant to our case study.
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Trace gathering. We now discuss how we gathered benign



traces and generated attack traces through testbed experiments.
Benign Traces: We collected benign traces by random

sampling traces from a crowd-sourced platform to which users
world-wide submit their cellular network traces through an
Android app called MobileInsight [52]. Our collected traces
include 1892 NAS layer traces containing about 52K messages
and 2045 RRC layer traces containing about 1.5M messages.
We cleaned up the traces so that each contained 100 states as
this is sufficient for the attacks we considered.

Malicious Traces: To collect malicious traces, we first
implemented each attack and its variants using srsLTE [53]
and software-defined radios in a testbed. srsLTE is an open-
source cellular network stack which permits the modification
of different components of the network. We then extracted the
attack traces with SCAT [54], a desktop application capable of
extracting 4G LTE modem traffic exposed by certain devices
through a USB interface. Finally, we inserted one or more
copies of the attack traces at arbitrary positions of some
arbitrarily chosen benign traces to obtain our set of malicious
traces. The latter is meant to mimic real-world scenarios in
which attacks span a few sessions of the protocol.

Quality of the synthesized attack signatures. In this case
study, our quality criteria were signature succinctness and
correctness in capturing the attack. We consider an attack
signature to be succinct if it can concisely capture the at-
tack’s root cause without including superfluous events (e.g.,
messages received/sent) or conditions (e.g., predicates over
message payload). Visual inspection of the signatures returned
by SYSLITE and the baseline shows that those generated by
SYSLITE, shown in Table IV, are more succinct.

Looking at correctness, all the attack signatures synthesized
by either the SAT-based baseline or SYSLITE for the NAS
layer have a perfect (100%) precision, recall and F1 on the
testing set. However, the baseline is able to synthesize signa-
ture only with samples of small size. For all the RRC layer
attacks, SYSLITE is able to score perfectly on the test dataset
based on the statistical measures. The baseline, however, does
not achieve a 100% precision, recall, and F1 score as it cannot
synthesize any signature for the Measurement Report attack.
We have manually vetted the synthesized attack signatures
by both SYSLITE and the baseline based on our expertise
in cellular security and observed that the generated signatures
correctly identified (i.e., rejected) traces containing attacks.

Scalability. The scalability results for Case Study II are shown
in Figure 2. The graph’s X-axis shows the sizes of the different
training sets we used whereas the Y-axis (in log-scale) reports
the corresponding training time in seconds. The timeout value
is shown as a red horizontal line. For ease of exposition, we
show only the training results for 3 NAS and 2 RRC layers
attacks. For the rest of attacks, the results follow a similar
trend. See Arif et al. [29] for complete results.

We conjecture that the performance of the baseline is com-
parable with that of SYSLITE when learning attack signatures
on the NAS protocol layer because it induces attacks spanning
only a single protocol session. Thus, the patterns are relatively

easier to learn. On the other hand, for the RRC layer attacks,
the sequences of attack steps can be complex and spread
over multiple sessions, thus making it challenging to learn
(see [29]). Indeed, the baseline timed out more frequently
while synthesizing multi-session attacks from RRC traffic. In
case of the Measurement Report attack, the baseline timed out
for all sample sizes and did not yield any signature. In contrast,
and as illustrated in Figure 2, we observed that the SYSLITE
is scalable and efficient in synthesizing multi-session attacks
signatures, exhibiting on average a 28x speedup over the
baseline. We stress that scalability is essential in this context
to promptly generate attack signatures for newly discovered
attacks before attackers can cause substantial damage.

VI. RELATED WORK

The problem of Learning LTL formulas consistent with a
given set of traces is an instance of the so called language
learning from the informant problem [1], [5], [21]. Unlike
prior approaches for Signal Temporal Logic (STL) formula
learning [55]–[58] and LTL specification mining [59], [60],
these exact learning methods do not require any user-provided
templates. Alternatively, for attack monitor synthesis, one
can envision using active/passive learning to learn a regular
language representation (e.g., DFA [61]–[64], NFA [65], alter-
nating automaton [66]) of attack signatures. Monitoring such
regular language representations with language recognizers
(e.g., DFA) may require exponentially more states than PLTL.

Also, these regular language learning methods are not scal-
able as an automaton requires an explicit state representation
of the behavior to-be-learned. LTL formulas, in contrast, are an
efficient alternative for capturing behavior as it offers a more
succinct and interpretable representation. Efforts on synthesis
of reactive synthesis design [67] and counterexample-guided
inductive synthesis [68] are complementary to the approaches
we discuss here.

VII. CONCLUSION

We have presented an efficient approach for synthesizing
PLTL formulas from a set of finite traces. The approach
reduces the problem to a bit-vector function synthesis problem
and then uses an enhanced version of the CVC4SY SyGuS
solver to solve the latter. The reduction to bit-vector function
synthesis proves critical for performance not only because
CVC4SY implements specific optimization for bit-vectors but
also because it allows us to efficiently express the requirements
capturing the consistency of the solution with the samples. The
conventional wisdom that SyGuS solvers are more efficient
for problems over natively supported theories compared to
reductions to other SMT theories (such as algebraic datatypes)
or to SAT is corroborated by our experimental evaluation.

Possible directions for future work include understanding
the impact of grammar representation (i.e., which temporal
operators to be included in the syntactic specification of the
SyGuS problem) in the efficiency of PLTL formula synthesis
as well as extending the current approach to synthesizing past,
propositional metric temporal logic.
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