
Formal Methods in Computer-Aided Design 2023

CRV: Automated Cyber-Resiliency Reasoning
for System Design Models

Daniel Larraz∗ , Robert Lorch∗ , Moosa Yahyazadeh∗ , M. Fareed Arif† ,
Omar Chowdhury‡ , Cesare Tinelli∗

∗The University of Iowa, Iowa City, USA, � daniel-larraz@uiowa.edu
†The University of Oxford, Oxford, UK ‡Stony Brook University, Stony Brook, USA

Abstract—We present the design and implementation of an
automated static analysis approach and corresponding diagnostic
tool, called Cyber Resiliency Verifier (CRV), to check whether
a system design satisfies its end-to-end guarantees when the
integrity of one or more of its components cannot be guaranteed.
CRV’s key insight is to reason about effects of integrity attacks
instead of concrete attacks, enabling it to reason also about the
impact of future attacks having the same captured effects. We
demonstrate CRV’s effectiveness with a case study on a realistic
design of an unmanned aerial delivery drone.

I. INTRODUCTION

Security vulnerabilities in critical systems can have catas-
trophic impacts. Even when a vulnerability is discovered,
performing root cause analysis and then adding security
mechanisms a posteriori can be expensive, challenging, or
infeasible. Exploitable weaknesses in a system’s design are
arguably harder to mitigate after deployment due to back-
ward compatibility requirements, operational cost, and QoS
constraints. This paper focuses on enabling system architects
to identify and mitigate such design weaknesses at the system
design stage.

A major reason systems have exploitable design weaknesses
is that during the design phase, security considerations often
take a secondary role to other requirements such as time to
market. In addition, current design analysis tools and method-
ologies often pay scant attention to security considerations.
The lack of sophisticated capabilities for the identification of
security vulnerabilities at an abstract design level is an imped-
iment for the model-based system design paradigm to reach
its full potential. Although it is impossible to fully avoid vul-
nerabilities in the implementation, model-based analysis tools
can nevertheless help designers design systems with cyber-
resiliency in mind, that is, design systems whose functionality
and integrity guarantees degrade gracefully under attack. We
broadly define a system’s integrity properties/guarantees as
functional properties that must be satisfied for achieving its
desired functionality. We propose a general approach and a
highly automated tool, CRV, whose rich diagnostic infor-
mation allows a system architect to assess under different
threat models the resiliency of a system design with respect
to desired integrity properties. A static analysis tool like CRV
allows a system architect to account for security considerations
already in the design phase. In particular, it enables what-if -
type analyses exploring the effect that violations of integrity

properties in a sub-system or software component may have on
the overall system guarantees, avoiding surprises like a recent
supply chain attack [29].

A typical workflow prescribed by CRV starts with the
system architect developing a system model in a suitable
modeling language and identifying critical functional prop-
erties that the system must maintain even when subject to
attacks that compromise one or more system components. A
system’s design model (or, system design) contains system
architecture information as well as behavioral information on
one or more components. For cyber-resiliency analysis, the
designer additionally selects a subset of the model’s compo-
nents and/or connections whose integrity cannot guaranteed.
CRV then automatically instruments the design to account for
the integrity issues. This instrumentation reduces the problem
of assessing the cyber-resiliency of the design to a model
checking problem: the satisfaction of the original functional
properties also in the instrumented model. A violation of one
of these properties implies that the original design (before
instrumentation) is not resilient in the presence of attacks
captured by the chosen threat model. When CRV discovers
a violation, it provides as evidence an execution trace of
the instrumented system for each violated property. These
traces demonstrate the viability of attacks from the chosen
threat model, as well as their effects on system properties.
Additionally, for each violation, CRV provides a list of system
components whose misbehavior may have contributed to the
violation. For each property that remains satisfied even under
attack, CRV provides a list of critical sub-components that
may have contributed to satisfaction of the property. We
demonstrate the effectiveness of CRV by evaluating it with
respect to a case study of an UDD.

Contributions. In summary, this work makes the following
technical contributions: (i) a general framework and tool for
analyzing the resiliency of a system design with respect to de-
sired functional properties against one or more threat models,
including replay attacks; (ii) a novel notion of attack/threat
effects that allows for the automatic instrumentation of design
models and takes into account both known and unknown
integrity attacks by reducing resiliency analysis to model
checking; (iii) a formalization of attack effects in terms of the
Dolev-Yao model, a formal model common in cryptographic
protocol verification; (iv) a new automated process, blame
assignment, to identify compromised components of a system

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0000-0001-5305-7340
https://orcid.org/0000-0001-9242-019X
https://orcid.org/0000-0002-3524-0317
https://orcid.org/0000-0002-4228-8343
https://orcid.org/0000-0002-1356-6279
https://orcid.org/0000-0002-6726-775X
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/


Fig. 1: CRV Architecture and Workflow Diagram.

design whose misbehavior can contribute to the violation of
one or more functional properties of the system; (v) an au-
tomated process, merit assignment, that identifies components
of a system design that positively impact the satisfaction of
desired properties; and (vi) a case study of CRV against a
model of an unmanned delivery drone.1

II. DESIGN OVERVIEW OF CRV

We start this section with the problem definition. We then
present CRV’s architecture, describe its interactions with the
system designer, and discuss the underlying challenges.

A. Problem Definition and Scope

CRV automatically checks if a system design provides the
required functional guarantees when the integrity of some of
its sub-component cannot be ensured. CRV reasons about a
hierarchical system design D specifying the system architec-
ture, the function behavior of each component, one or more
functional guarantees Φi, and a threat model Tm indicating
which components and connections are vulnerable to attacks.
CRV attempts to prove whether D can maintain Φi even when,
based on Tm, the integrity of one or more components or
connections is compromised.

We consider only systems whose designs can be expressed
as synchronous (finite- or infinite-state) transition systems. For
such systems, CRV focuses on integrity properties, functional
properties that can be violated by compromising the integrity
of their components or their interconnections. Technically,
CRV currently analyzes only system properties that can be
expressed as temporal safety properties of the form □

⋀︁
i ai →

□
⋀︁

j gj where ai and gj are quantifier-free, first-order past-
time LTL formulas and □ is the always/globally operator.

A large set of desired system-level integrity properties can
be modeled as temporal safety properties of the form supported
by CRV. Examples of such properties for the model in our
case study (see Section VI) would be the requirement that the
delivery drone never deliver a package to an off-limits location
or that it deliver a package to a given drop location only if the
location is clear. Many other examples exist in practice (see,
e.g., [19], [20], [15]).

Currently outside the scope of CRV are confidentiality,
authentication, and availability properties. Traditional analy-
ses of confidentiality properties such as non-interference only

1A VM image containing tool, models, and related instructions is available
to the reviewers at: http://clc.cs.uiowa.edu/fmcad23/.

consider attacks on system-level inputs, as opposed to attacks
on individual components of the system under analysis. Sup-
porting that traditional analysis in CRV would not be difficult.
Both the approach and the tool could be easily extended to
compose the input system design with itself (i.e., have two
copies of the system running in parallel) while asserting the
top-level safety property that the public outputs are equal
whenever the public inputs are equal. In contrast, in our case
study, where we also look at attacks on system components,
considering non-interference would require a new class of
properties whose violation may include both confidentiality
and integrity guarantee violations at the component level.

Authentication properties are relevant only to protocols
that use cryptographic constructs, as they are easily violated
without such constructs. For those cases, a cryptographic
protocol verifier could be incorporated in principle into CRV’s
workflow to enable reasoning about cryptographic constructs.
Investigating this integration is left to future work.

Although CRV could potentially reason about availability
properties (e.g., under the right conditions, the delivery drone
will make a successful delivery), adding this capability would
be more challenging in general. The reason is that such proper-
ties translate to liveness properties, and current model checking
technology is not advanced enough to prove (unbounded)
liveness for most realistic models of infinite-state systems.
However, we intend to provide support for some restricted
classes of availability properties in the future.

B. CRV Architecture and Workflow

The high-level architecture of CRV and its interaction with
the system designer is shown in Figure 1. The designer
starts by developing, in a suitable modeling language, the
design of the system to be analyzed. Currently, CRV is
available [32] through a plug-in of the OSATE IDE for the
Architecture Analysis and Design Language (AADL) [21]
extended with AGREE [11] contract language. The design
describes the system’s architecture in terms of system compo-
nents, component interfaces and interconnections, and a list of
components and connections considered vulnerable to attack.
In addition, the design also contains behavioral information for
some components, expressed in the form of assume-guarantee
contracts, capturing how input and internal state values are
converted to outputs and state updates. Finally, the architect
adds system-level properties that the model should satisfy,
expressed as guarantees of the top-level component in the
design.

When invoked, CRV’s front-end translates the design and
the system level properties into an intermediate representation
(IR). CRV can support other modeling languages with the
addition of the corresponding IR translators. The IR and
one or more user-selected threat models are then fed into
the threat instrumentor module which modifies the model’s
IR to include adversarial influences according to the list of
vulnerable components and connections. Finally, the threat-
instrumented model is fed to the Kind 2 model checker [9],

http://clc.cs.uiowa.edu/fmcad23/


[25] in order to prove or disprove that the model satisfies the
desired properties.

For each satisfied property, CRV’s merit assignment module
identifies system components and connections in the design
which are critical for satisfying the property. Dually, for
each violated property, the blame assignment module identifies
the vulnerable components/connections that contributed to the
violation. An attack trace, describing the attacker’s behavior
and the system’s response, is also presented as evidence.

C. Challenges

CRV addresses the following three analysis challenges.
Scalability. The complexity of model checking problems
CRV solves ranges from NP-hard to undecidable. CRV ad-
dresses this scalability challenge by leveraging Kind 2’s
reasoning support for complex, hierarchical systems in the
form of compositional verification where verification results
for sub-systems/components are used to discharge verification
conditions of higher-level components.
Behavioral modeling. Capturing components’ behavior in a
design model at the right abstraction level for a successful
analysis is a challenging task. More abstract behaviors simplify
the automated analysis but can lead to an increased number
of false positives: execution traces that falsify the property
but are not actual executions of the modeled system. In
contrast, more detailed behavior decreases or eliminates false
positives but can increase the analysis complexity to the point
of overwhelming the model checker. We prescribe capturing
abstract behavioral information in sufficient detail in the form
of assume-guarantee contracts for selected components. Such
contracts state that as long as a component’s environment
satisfies the contract’s assumptions, the component’s behavior
will satisfy the contract’s guarantees.
Threat instrumentation. The final challenge is how to in-
corporate the adversarial influence in the design. One possi-
ble approach is to explicitly consider concrete attacks (such
as buffer overflow, malware attacks, and so on). Unfortu-
nately, this approach has serious shortcomings: (i) listing
all possible integrity attacks can be cumbersome and time-
consuming; (ii) the attacker model becomes outdated with the
discovery of newer attacks; (iii) the design may not contain
implementation-level details for the sake of scalability, making
it difficult to describe specific attacks (e.g., SQL injection);
(iv) no guarantees can be provided against zero-day attacks.
To address these challenges we consider attack effects instead
of concrete attacks, as explained in the next section.

III. DESIGN MODEL INSTRUMENTATION

In this section, we explain the notion of attack effects and
then discuss the automatic instrumentation of the model.
The Problem. The threat instrumentation process in CRV
solves the following main problem: Given a formal description
of a system component in terms of its input/output interface
and behavior, how do we capture all possible integrity attacks
that can impact the component’s behavior? The problem can
be further decomposed into two technical questions:

(Q1) how to consider all possible integrity attacks efficiently;
(Q2) how to incorporate the different attacks, some of which
can be implementation-specific, into a design containing only
abstract information.

A. Attack Effects

Our main insight for addressing question Q1 above is to
switch attention from attacks to their effects. More precisely,
we argue that, in the context of resiliency analysis, it is
sufficient to consider the effects of integrity attacks on a
system component’s behavior instead of the concrete attacks
themselves. Capturing the effects frees us from having to
worry about the details of how each attack is achieved in
concrete. Effects of integrity attacks can be viewed as attack
abstractions which group together integrity attacks according
to their consequences on a system. In addition to simplifying
reasoning, this sort of abstraction allows us to reason at once
about all integrity attacks having a certain set of effects.

In general, an integrity attack can have the following three
effect types: (E1), or standard attacker, lets the adversary
modify the behavior of the attacked component at will—as
done, for instance, in buffer overflow attacks; (E2), or replay
attacker, lets the adversary replay previous values of data sent
across vulnerable network connections; and (E3) which can
render the component unresponsive—for instance, by making
it crash. Note that (E1) is strictly stronger than (E2)— the
user chooses between (E1) and (E2) based on the system and
adversary under consideration. Both cases include (E3). In our
context, these effect classes are sufficient to account for any
kind of integrity attack in a system design.
Capturing Attack Effects In view of our classification of
attack effects, question (Q2) becomes how to incorporate the
three types of effects (E1–E3) into the design automatically.
When instrumenting a component or connection with effects
of type (E1), CRV does not constrain in any way the behavior
an adversary would choose. This allows it to reason about
all relevant attack strategies that violate the desired functional
properties. When instrumenting a connection with effects of
type (E2), CRV constrains the adversary’s behavior to only
inject values that were previously sent along the connection.

Technically, we model adversarial actions by adding nonde-
terminism in selected places in the model, accounting for un-
constrained adversary behavior, and letting the model checker
find a concrete behavior (i.e., an execution trace) that results
in a property violation. In essence, we let the model checker
play the adversary by allowing it to replace the output of a
compromised component by any value (of the correct type)
of its choosing or, in the case of a replay attacker, by any
previous output value.

In terms of the Dolev-Yao model [13], a formal model
common in cryptographic protocol verification, CRV effec-
tively places a restricted Dolev-Yao-style adversary after each
output of a vulnerable component, allowing the adversary to:
arbitrarily change an output, mimicking (E1) attacks; replay a
previous value, mimicking (E2) attacks; or drop an output,
mimicking (E3) attacks. Note that the standard Dolev-Yao



A B

A B

A B

(a)

(b)

(c)

Sell

Sell Sell

Sell Donate

AB
Off

AB
On

Fig. 2: (a) Non-instrumented channel between A and B; (b) instrumented but
not enabled channel between A and B; and (c) enabled instrumented channel

between A and B.

model considers a network adversary to be placed only on
public channels where it has the following capabilities: (a)
it can sniff, (b) drop, and (c) modify any message passing
through the channels; (d) it can send messages impersonating
the protocol participants; moreover, (e) it can exercises ca-
pabilities (a)–(d) while conforming to cryptographic assump-
tions. Our restriction of the model does not include capabilities
(a) and (e) as CRV does not currently consider confidentiality
properties nor reasons about cryptographic constructs.2 Our
instrumentation further deviates from the Dolev-Yao model by
placing an adversary in a non-public channel (i.e., encrypted
and integrity protected) when the sender in the channel is
marked by the designer as vulnerable to integrity attacks.

As an example, consider the design fragment shown in
Figure 2(a) where component A feeds its single output, of
enumeration type {Sell,Donate}, only to component B. If A is
vulnerable to integrity attacks (e.g., buffer overflow) impacting
its integrity, then we instrument the model by placing a new
component AB between A and B, effectively simulating a
vulnerable public communication channel as in the Dolev-Yao
model. The new component has two inputs, namely the output
of A and a Boolean input corresponding to an enabling switch
(analogous to an activation variable in fault analysis), and a
single output sent as input to B. When the switch is off (see
Figure 2(b)), the AB component behaves as a benign lossless
channel, faithfully forwarding the output of A to the output
of B. When the switch is on, the AB component can behave
maliciously by replacing the output of A with a different
value chosen non-deterministically (see Figure 2(c)). We use
the switch inputs because they are essential for generating
diagnostic information (i.e., blame assignment), where each
switch is treated symbolically as a model parameter.

B. Utility of CRV’s What-if Analyses and Threat Models

CRV comes with a set of user-selectable built-in threat
models, which allow it to determine automatically vulnera-
ble components and connections. To use these, the designer
annotates model components and connections with a few
security-related meta-level attributes, for example, the pedi-
gree of a component expressed by an enumerated type like
{COTS,Sourced, inHouse}. (See [14] for a detailed list of
such meta-level attributes.) Then, CRV identifies components
and connections that should be considered vulnerable to attack

2Capability (e) can be simulated by incorporating a cryptographic protocol
verifier into CRV’s workflow.

in the selected threat model(s). The details of the built-in threat
models in CRV are presented in Section III-C.

Based on our presentation so far, a system designer can
pose what-if queries of the sort: What happens if a set
X of vulnerable components and connections is subject to
integrity attacks? Does the system design still ensure the
satisfaction of the desired properties? To illustrate the utility
of the underlying what-if analyses of CRV, we describe how
a system architect (i) could model supply chain attacks and
(ii) design zero trust networks.

To model a supply chain attack [29], the system designer an-
notates each model component corresponding to an outsourced
subsystem as vulnerable to attack. Given this information,
CRV determines if violations of the outsourced component’s
contract (in this case, due to supply chain vulnerabilities caus-
ing the component to misbehave) lead to violations of system-
level integrity properties. If so, the designer should consider
mitigating actions such as producing the subsystem component
in-house or pursuing additional supply chain protections. If
not, the model is resilient to supply chain attacks.

Zero trust networks are networks where every component
performs input validation, rather than assuming that internal
network connections are safe from attack [28]. As input val-
idation can be computationally expensive, a system designer
might want to verify if validation can be safely skipped for
some input channels. To model this situation, the designer
marks the corresponding model connections as vulnerable, and
CRV will report if attacks on such connections affect system-
level properties. If no system-level properties are violated
under the chosen threat model(s), the system is cyber-resilient
enough for the designer to consider forgoing validations steps
on inputs coming through the marked connections.

C. Built-in Threat Models

CRV can automatically identify the vulnerable model com-
ponents and connections according to some built-in threat
models. A threat (effect) model, in this context, conservatively
describes the criteria under which certain components and
channels can be considered vulnerable to attacks (such as,
logic bomb, remote code injection, and malware) that impact
the control-flow integrity of the components/channels match-
ing the criteria.

More operationally, we express threat models as queries on
the design model data that specify the criteria for classifying
components or channels as vulnerable to certain integrity
attacks. Concretely, a specific threat model can be expressed
as a query whose result is a set of components/connections
that satisfy specific constraints on the meta-level attributes.

As an example, a component is automatically classified as
susceptible to logic bomb or software Trojan attacks if (i)
the component’s type is software or software hybrid; (ii) its
pedigree is either COTS, or Sourced without supply chain
protection or tamper protection; and (iii) the component has
not gone through static analysis or adversarial testing for logic
bombs. A list of threat model descriptions currently used by
CRV is given in [14]. Note that it is easy to expand such a list



since new meta-level attributes and threat model descriptions
can be added modularly.

IV. MODEL CHECKING AND DIAGNOSTICS

We now discuss how CRV takes advantage of automated
reasoning to perform resiliency analysis and generate mean-
ingful traceability and diagnostic information from it.
Model Checking for Resiliency Analysis. We reduce the
problem of checking the resiliency of a system design to
integrity attacks to a model checking problem for the threat-
instrumented version of the design. In CRV’s workflow, the
threat instrumented model and the desired functional proper-
ties are fed to the Kind 2 model checker [9]. Using induction-
based techniques, Kind 2 tries to prove that each property is
satisfied for any possible execution, including those containing
the attacks contemplated by the instrumentation. In parallel
with that, Kind 2 uses bounded model checking techniques to
exhaustively search for execution traces in the instrumented
model that violate one or more of the given properties. For
each property, Kind 2 can output three possible verification re-
sults: SAFE, meaning that the instrumented design satisfies the
property; UNSAFE, meaning that the design allows executions
violating the property; and UNKNOWN, returned for instance
when the model checker times out. For each definite answer
(SAFE or UNSAFE), Kind 2 provides additional diagnostic
information, as discussed below. The UNKNOWN case is due to
the undecidability of the model checking problem for infinite-
state systems in general and to the high computational com-
plexity of the problem in decidable subcases. We emphasize
that Kind 2 employs sound proving techniques which are,
however, necessarily incomplete in the case of infinite-state
systems.
End-to-End Security Properties. A designer may wonder if
they could simply model each component in isolation, rather
that dealing with a complex, hierarchical model spanning the
entire system. Thanks to CRV the latter strategy is preferable
as it enables the designer to reason formally about end-to-
end properties that reference output from multiple components.
To start, end-to-end reasoning enables the user to prove that
system-level properties hold in the benign case, which is an
important initial sanity check. More important, CRV’s analysis
may show that property violations for one or more individual
sub-components do not actually lead to system-level attacks
— which is the case when CRV proves that system-level
properties are still preserved. In contrast, without a tool like
CRV, the designer has to manually reason about whether
attacks on individual components can compose to a violation
of a system-level property.

A. Attack Traces

For each property that it proves UNSAFE, the model checker
returns as evidence to CRV an input/output counterexample
trace, in effect an attack trace. The trace contains detailed
information of the attacker’s actions (i.e., the non-deterministic
choices made in the instrumented channels) as well as the
reactions of the other components to those actions.

A CAB
On

B BC
On

AD
On

D DE
On

E EC
On

attack 
found

Fig. 3: An example instrumented design with all components being
vulnerable.

AB
On

BC
On

AD
On

minimal cut set

AB
On

BC
On

AD
On

AB
Off

BC
On

AD
On

attack 
found

attack 
found

no 
attack

(a)

(b)

(c)

BC
On

AD
On

DE
On

EC
On

m
inim

al cut set

minimal cut set minimum cut set

(d)

On

AB

Fig. 4: An example of minimal and minimum cut-set.

B. Blame Assignment

For each property determined to be UNSAFE, in addition to
the attack trace, CRV can also generate information regarding
misbehaving components that may have contributed to the
violation. We call this functionality blame assignment. CRV
supports a locally optimized [24] and a globally optimized [23]
form of blame assignment, both achieved by posing a series
of queries to the backend model checker.

To understand blame assignment, consider as an example
the threat-instrumented system design sketched in Figure 3
where all components are vulnerable according to the threat
model specified by the user. This is reflected by the presence
of an adversarial component (e.g., AB) between each pair
of connected components (e.g., A and B). Each adversarial
component is switched on, that is, it is enabled to perturb
the communication between the components it links. Once
the model checker finds an attack trace that demonstrates
the violation of a property, the blame assignment module of
CRV will try to minimize the number of enabling switches
that must be turned on to cause a violation of the property.
Technically, this is analogous to finding a minimal cut set [1],
[23] for these switches. Suppose it is enough to turn on just
components AD, AB, and BC in Figure 3 for the model checker
to come back with an UNSAFE verdict for the property (see
Figure 4(a)). Then these three switches form a minimal cut set
only if turning off any of them (say, switch AB) changes the
verification verdict to SAFE (see Figures 4(b)). Since there
may be many different minimal cut sets for the complete
set of switches, CRV tries to find the one with the smallest
cardinality (e.g., {EC} in Figure 4(d)).

C. Merit Assignment

If, after its resiliency analysis, the model checker returns a
SAFE verdict for a given desired property, CRV also provides
a list of components whose behavior might be critical for
the satisfaction of the property. The conditional is necessary



A CAB
On

B BC
On

AD
On

D DE
On

E EC
On

Validated

Con
tra

ct

Con
tra

ct

Con
tra

ct

Con
tra

ct

Con
tra

ct

Top
Con

tra
ct

Fig. 5: The top component’s contract is respected given all internal
components’ contract are validated.

Contract

A
Contract

B
Contract

C
Contract

D
Contract

E
Contract

Top, , , , ⊨
inductively 

entails

Contract

A
Contract

D
Contract

E
Contract

Top, , ⊨
inductively 

entails

(a)

(b)

minimized cardinality

Fig. 6: Merit assignment problem as finding a minimal subset of the set in
(a) that still inductively entails a given guarantee in the system’s contract.

because, for efficiency reasons, the user has the option of
requesting an over-approximation of the critical list. This
functionality called merit assignment is useful for two reasons:
(i) it provides better traceability in the model by confirming
whether the defenses put in place by the designer in response
to a (previous) violation of the property indeed play a role
in maintaining the property; (ii) it provides additional infor-
mation for system developers, who then know that behavioral
changes to the components outside the merit assignment set
will not affect the property and that, instead, extra precautions
should be taken when implementing components in that set.

Merit assignment in CRV relies on the computation of a
minimal inductive validity core (MIVC) [17], another func-
tionality provided by Kind 2. As in other symbolic model
checkers, Kind 2 represents an input model internally as a
transition system consisting of an initial state predicate I
characterizing the system’s initial state(s) and a two-state
transition relation T describing the system’s behavior. The
relation T can be expressed as conjunction or, equivalently, a
set of constraints over states and their successors. A MIVC for
a particular property P satisfied by a transition system (I, T )
is a minimal subset T ′ of T such that (I, T ′) also satisfies P .
The name MIVC comes from the fact that the model checker
proves that a transition system satisfies P , i.e. that the property
is valid in every execution of the system, by using inductive
arguments. In that case, one can say that the system inductively
entails the property.

To illustrate the concept, let us consider the example in
Figure 5. Suppose the model checker is able to prove that
the composition of the top component’s behavior and that
of each of its subcomponents, expressed by its contract,
inductively entails a desired system-level property, expressed
as a guarantee in the top-level contract (see Figure 6(a)).

Merit assignment provides a minimal subset of subcompo-
nents whose contracts suffice for the proof. Concretely, if
the contracts of the subcomponents A, D, and E are both
sufficient and necessary to construct a proof of the guarantee
(see Figure 6(b)), then A, D, and E, and only those, will
be included in the merit assignment. Furthermore, for each
included subcomponent, CRV will single out the individual
guarantees in the subcomponent’s contract that are enough to
prove the desired top-level property.

In our case, due to inherent runtime complexity reasons, we
resort to identifying approximate MIVC, i.e. (not-necessarily
minimal) supersets of a MIVC, another functionality provided
by Kind 2. Experimental results by Larraz et al. [23] show
that approximate MIVC typically approximate true MIVC very
closely while requiring significantly less time to compute.

V. IMPLEMENTATION OF CRV

Although designed to be incorporated in various modeling
environments, CRV is currently available as a functionality of
VERDICT, a larger cyber-resilience analysis tool developed
with partners at GE Research [27]. In this section, we provide
some details specific to CRV’s implementation.
Modeling Language. We instantiated CRV for the AADL
modeling framework [16]. An AADL model can capture
the architecture of a synchronous reactive system in terms
of components and their interconnections. Components of
an AADL model are systems, which group together other
components (or subsystems), and data, which define the data
types used by the various systems. To model interactions
among (sub)systems one defines an interface for each of them
consisting of data ports, event ports, and connections. AADL
can be extended by users in two ways. The first is the addition
of user-defined attributes, called properties in AADL. This
allows us to capture whether components or their connections
should be considered vulnerable to attack. AADL also has an
extension mechanism based on language annexes with which
one can embed a domain-specific language (DSL) in AADL
and use it to enrich the design description. One such annex
contains the AGREE DSL [11] which allows one to express
behavioral information for synchronous components formally
and declaratively. Component behavior is specified in AGREE
either as an assume-guarantee contract or as an implementation
consisting of equational constraints on ports and internal state
variables.
Front-end Translator. We developed a translator for CRV,
written in Java, that takes as input an AADL design model en-
riched with security-related AADL properties and component-
level behavioral specs in AGREE, and translates it to an
intermediate textual representation (IR). Our IR is general
enough to accommodate a wide variety of modeling lan-
guages supporting the synchronous model of computation
(e.g., Simulink+Stateflow). The IR is close in structure to
the synchronous dataflow language Lustre [18].
Threat Instrumentor. The threat instrumentor module of
CRV is written in Java. It takes the IR version of the design
model and the selected list of vulnerable components and



connections, and returns a threat-instrumented design, also
written in the IR language.
Standard Attacker. When CRV generates the instrumented
model, a component is automatically generated to specify
the adversary’s behavior. A standard attacker, such as in
Figure 2(c), is modeled as an intermediate component which
takes messages from component A as input and produces
adversarially-instrumented messages to pass to component B.
Bounded Replay Attacker. A replay attacker component is
obtained by adding a contract to a standard attacker that re-
stricts its output messages to be equal to previous (legitimate)
messages from the last n time steps. This models adversaries
that can only replay past outputs and have a bounded memory.
The number n is configurable by the user in CRV’s front end.
Unbounded Replay attacker. We also include support for a
replay attacker with unbounded memory, i.e., the ability to
replay messages that were sent arbitrarily far in the past. This
is achieved by representing the sequence of past outputs in the
model as an uninterpreted function from time steps to output
values that is progressively constrained at each step with the
current output value, and by allowing the model checker to
query the function at any step up to the current one.
Model Checker. As already discussed, CRV uses the Kind
2 model checker in the backend for its analysis. An internal
translator in CRV, not shown in the architecture in Figure 1,
translates the instrumented IR to a system model written in
Kind 2’s input language, an extension of Lustre with support
for assume-guarantee contracts [8]. CRV then asks Kind 2 to
prove the correctness of the top-level component in the model,
standing for the entire system, with respect to its contract.
Kind 2 returns its results to CRV incrementally as it proves or
disproves each top-level (i.e. system-level) guarantee. In turn,
CRV converts those results in terms of diagnostic information
on the input AADL model and provides it to the user.
Diagnostic Information. The basic level of diagnostic infor-
mation tells the user if each system-level guarantee is satisfied,
violated, or undetermined (because of a timeout). It also
provides a counterexample trace for each violated guarantee.
The next level includes blame assignment for the violated
guarantees and merit assignment for the satisfied ones. We
implemented the bulk of the blame and merit assignment
functionality directly as an extension of Kind 2, which is
written in OCaml. The two features collectively span over 2K
lines of OCaml code. For locally optimized blame assignment,
we rely on the MaxSMT functionality provided by the Z3 SMT
solver [12].
OSATE Plugin. We provide CRV’s functionalities through
a plugin developed with our industrial collaborators [32] for
OSATE [31], a development and analysis environment for
AADL models.

VI. A CASE STUDY ON UNMANNED DELIVERY DRONE

We now discuss a case study on analyzing a realistic model
of a hypothetical unmanned delivery drone (UDD).
Goal. The case study had the following objectives: (i) pro-
vide evidence that CRV can analyze complex designs; (ii)

GNC

GPS

IMU

CameraConnector

Radio

Delivery Item Mechanism

Delivery Planner

Position Estimator

Flight Controller

Actuator

satellite0 pos.

satellite1 pos.

constellation

launch pos.

health status

camera out 

camera in 

bus in

bus out

comm. in

health status

radio out 

radio in 

pack. is secure

del. status out 

del. cmd in

GPS pos.

health 
status

probe constellation

IMU pos.

probe launch pos.

health 
status

probe abort mode

dest. pos.

current pos.

nav. cmd

probe nav. cmd
probe bus out

probe init. mode

pos. act.estimated pos.

statemove

probe dest. pos.

actuation 
response

motor 
cmd

probe act. response

Navigator

Fig. 7: System architecture of unmanned delivery drone (UDD)

concretely illustrate the responsibility of the human designer
in the CRV workflow (i.e., the manual steps); (iii) show the
interaction of the system designer with CRV; (iv) assess the
value of CRV’s blame and merit assignment features for de-
bugging the design; (v) evaluate CRV’s runtime performance.
High-level UDD system description. The drone is a part of
a last-mile delivery unit consisting of a van with packages to
be delivered to suburban locations, and one or more delivery
drones, also stored in the van. Once the van arrives at a
location close to multiple delivery sites, each delivery drone is
initialized with its current position and delivery location, and
is loaded with the package for that delivery location. Once the
drone takes off with the package, it uses inputs from a GPS
receiver and an Inertial Measurement Unit (IMU) to navigate
to the delivery location. When it reaches the delivery location,
the drone uses an on-board camera to capture an image of the
delivery site to confirm that the landing location is clear and
so it is safe to drop the package. For high-value packages, the
delivery drone uses radio communication to get confirmation
from the operator in the van. If there are no obstacles in the
delivery location and a confirmation (if needed) is received
from the operator, the drone’s controller activates a delivery
mechanism to drop off the package. The drone then returns to
the van for another delivery or storage.
Scenarios. For our case study, we consider two scenarios and
7 functional properties to demonstrate CRV’s effectiveness.
As a result, we identified one design weakness/attack for
each property. In Sections VI-A through VI-C we focus on
one scenario consisting of a single property. The remaining
scenarios and properties are presented in Section VI-D.

A. System Architecture of UDD

The system designer first develops the architecture of the
UDD, which can be visualized graphically with a diagram
like the one in Figure 7. In AADL, this is done by defining
the top-level component and each of its subcomponents as
individual AADL systems, and then specifying their interface
and connections. As an example, here is a specification of the
interface of the DeliveryItemMechanism system in our model:
system DeliveryItemMechanism
features
delivery_cmd_in: in data port PackageDeliveryCmd;
delivery_status_out: out data port DeliveryStatus;
package_is_secure: out data port Boolean;

end DeliveryItemMechanism;



For each component, the designer identifies a set of input
and output ports used by the component to communicate with
its environment, and specifies the type of data exchanged in
each port. In addition to basic types, such as Boolean and
Integer, AADL allows the use of user-defined types for ports.

After that, the architect can describe the internal structure
of each composite system, by adding a system implementation
(not shown here) that lists the system’s subcomponents and
specifies how they are connected together.

B. Design Model of UDD

Next, the designer specifies the behavior of each leaf
component of the architecture, i.e., a component with no sub-
components. This is achieved by associating to it an assume-
guarantee contract written in AGREE. Intuitively, assumptions
describe the expectations the component has on its inputs and
on the global values it has access to, while guarantees describe
restrictions on the output values it produces. Behaviorally, each
component is a reactive system, instantaneously producing
output based on its current input and internal state. Assume-
guarantee contracts in AGREE are essentially statements in
a linear temporal logic rich enough to precisely describe a
component’s reactive behavior from the point of view of an
observer that, at all times, has access to all the input and
output values generated until then. Atomic formulas in this
logic are first-order predicates that relate the values of the
various ports and intermediate variables. Contracts provide a
mechanism for capturing the information needed to specify
and reason about component-level safety properties at the
desired level of abstraction. Now, let us assume that for the
DeliveryItemMechanism component the following is known:

1) Initially the delivery has not started.
2) If a delivery command is issued, the delivery status must

become different from not started.
3) If no command is issued or an abort command is

received, then the delivery status resets to not started.
This is a minimal amount of information about the expected
behavior of the DeliveryItemMechanism component. We ex-
plain how to formalize it in AGREE below, using abstract
syntax for conciseness.

To formalize (1), we add the following guarantee stating
that the delivery status s (abbreviating delivery_status_out)
is equal to not started initially:

G1: s = (not started → true)

The infix initialization operator → is an AGREE operator.
An expression of the form e1 → e2 evaluates to the value of
expression e1 initially and to the value of e2 at all later steps
of the system’s execution. To formalize aspect (2), we add the
following guarantee where c abbreviates delivery_cmd_in:

G2: true → (c = release ⇒ s ̸= not started)

Similarly, we capture aspect (3) with this guarantee:
G3: true →

(c = no op ∨ c = abort ⇒ s = not started)

So far, we have only added constraints about the output port
delivery_status_out. Any system execution that satisfies

those constraints will be considered valid during the analysis
performed by CRV.
Desired Functional Requirements. The next step is to review
the list of functional (or safety) requirements for the system
that may affect its integrity, and formalize them as cyber-
resiliency properties in AGREE. For instance, suppose we have
the following cyber-requirement for DeliveryDroneSystem

which forbids package delivery to certain locations (while
allowing the UDD to still fly-over them):

P7. The drone will never initiate a packet release in an
off-limits location.

To formalize P7, we have to first identify the components
and ports of the system that are relevant to this property. In
our example, DeliveryPlanner is the component that issues
the command to release a package by setting the output port
delivery_cmd to release, while DeliveryItemMechanism is the
component that receives the command and proceeds with the
delivery. Moreover, to know where the drone should release
the package, the DeliveryPlanner reads the delivery location
from the input port bus in through the Connector component
when the drone is in the van, and then it passes this value
to the Navigation component. In addition, we also need to
know when a location is off-limits. For that, we can define a
new predicate InRA over locations that evaluates to true if and
only if its input location is within a restricted area.

Then we can express the cyber-property with the following
top-level guarantee where dl is the delivery location:

P7 : InRA(dl) ⇒ s = not started

Vulnerable Components and Connections. To make the
design amenable to CRV’s analysis, designers also need to
annotate components and links that are vulnerable to attack.
For instance, suppose that DeliveryPlanner is considered vul-
nerable to attack (e.g., it is an outsourced software component
that has no supply chain security and no tamper protection,
and has not been statically analyzed).

C. CRV Analysis

Analysis in the Benign Case. The designer must check that
the system design model satisfies its guarantees in the benign
scenario where no threat models are enabled. For our example,
CRV finds an execution that violates P7 because the delivery
location information provided as input during initialization
is actually an off-limits location. In this case, there are two
possibilities: (S1) the designer decides to prohibit that initially
provided delivery locations be off-limits; (S2) the designer
decides to treat initialization with an off-limit location as a
realistic possibility, perhaps as a consequence of malicious
code in the (external) software (in the van) that provides
initialization values for the UDD system. Assume (S2) cannot
happen in the benign scenario. Then the designer adds the
following assumption to the contract of DeliveryDroneSystem
to capture (S1) where tl is the target location provided through
the system’s input bus:

A1 : ¬InRA(tl)



In this case, with no threats enabled, CRV is able to prove
property P7 valid.
Analysis under Threat Effects. After verifying with CRV
that P7 holds in the benign case, the system designer can
run an adversarial analysis. In this case, CRV will find a
violation of property P7 that involves an attack to the UDD’s
delivery planner. From the blame assignment diagnostics,
we observe that the possible violation may result from an
attack on the DeliveryPlanner component that causes it to
violate its contract. The blame assignment analysis addi-
tionally identifies a minimal set of ports, dest_location and
delivery_cmd, that is enough to compromise to carry out the
attack successfully. One can also examine the counterexample
trace leading to the violation of the property and observe that
it occurs when the vulnerable DeliveryPlanner maliciously
instructs the DeliveryItemMechanism component to initiate
the release of the package while the drone is flying over an
off-limits location.
Analysis after Mitigation. After CRV presents a new attack,
the designer can see how to address its root cause by consider-
ing the vulnerable components and ports relevant to the attack.
Then, they can run another what-if analysis by considering
a situation where additional security measures have been
introduced to make some of the vulnerable components more
cyber-resilient. For example, suppose the designer sees the
DeliveryPlanner component as a candidate for enhanced
cyber-resiliency measures. When the component is labeled as
invulnerable to attack, a new analysis of the system confirms
that this fix is sufficient to rule out any attacks compromising
property P7. Moreover, the merit assignment post-analysis
reassures the user that the change indeed plays a role in the
satisfaction of P7 in an adversarial environment.
Performance. The AADL+AGREE model for the UDD sys-
tem in this case study consists of around 1800 lines of specs,
and includes 7 functional properties as top-level guarantees.
On average, each call to the tool, which triggers the threat
instrumentation, the verification of the properties, and the
merit/blame assignment analysis, takes 30s on a 1.10GHz
Intel(R) Core i7-10710U CPU machine with 16GB of RAM.

D. Details on Case Study Experiments

We used CRV to analyze the cyber-resiliency of the UDD
system with respect to two sets of system-level safety proper-
ties. The first set consists in the following five properties:

guarantee "P1: When the drone is switched on,
the GPS component uses the constellation
received most recently":
isOn =>
most_recent_constellation = probe_constellation;

guarantee "P2: Launch location for IMU is
initialized properly":
isOn =>
most_recent_launch_loc = probe_launch_loc;

guarantee "P3: Delivery location for navigation
is initialized properly":
isOn =>
most_recent_delivery_loc = probe_delivery_loc;

guarantee "P4: A command to release a valuable
package is issued only if drone has received
confirmation from base":
release_cmd and valuable_package =>
target_confirmed;

guarantee "P5: The drone will always request
confirmation from base before starting delivery
of a valuable package":
delivery_started and valuable_package =>
confirmation_requested;

First, we checked the system model satisfies the five proper-
ties without considering the effects of any threat model. CRV
was able to prove that in 9s. Then, we analyzed the cyber-
resiliency of the system against all threats in the CRV library.
As a result, CRV was able to find in less than 5s four network
injection attacks on bus1 leading to the violation of properties
P1, P2, P3, and P4, and one logic bomb attack on the
DeliveryPlanner causing the violation of property P5. Note
this is just one possible blame assignment result, the model
admits other minimal results. After reviewing the results,
we considered a scenario where the four network injection
attacks were not possible because the bus1 connection was a
trusted connection, and the logic bomb attack was not feasible
anymore after the decision to develop the DeliveryPlanner

internally instead of outsourcing it. To reflect the new scenario
we changed the meta-level attribute connectionType of the
bus1 connection from Untrusted to Trusted, and the meta-
level attribute pedigree of the DeliveryPlanner component
instance from Sourced to InternallyDeveloped. After the
change, we could check that no more new attacks were
possible by analyzing again the modified model against all
threats in the CRV library. This time CRV proved all five
properties valid in 20s.

The second set consists in the following two properties:
guarantee "P6: The drone issues a command to
release a package only if the delivery location
is the most recent delivery location provided":
release_cmd =>
probe_delivery_loc = most_recent_delivery_loc;

guarantee "P7: The drone never initiates a package
release to an off-limits location":
delivery_status <> NOT_STARTED =>
not InRestrictedArea(probe_delivery_loc);

In this new scenario, we considered the values of
the meta-level attributes for the bus1 connection and the
DeliveryPlanner component instance to be the original ones.
Again, we started checking that properties P6 and P7 were
satisfied by the system, which CRV confirmed after 8s. Then,
we focused on analyzing the cyber-resiliency of the system
with respect to property P7. Similarly to the first scenario,
CRV was able to detect in 3s a logic bomb attack on
the DeliveryPlanner that leads to the violation of P7. We
chose to neutralize the attack by implementing a runtime
monitor, as explained in Section VI, instead of enforcing
the internal development of the component. After integrating
the behavioral defense in the model, CRV could prove the
satisfaction of property P7 in 3s. The next step was to analyze



the cyber-resiliency of the system with respect to property
P6. In 3s, CRV confirmed that a logic bomb attack on the
DeliveryPlanner would still be able to falsify property P6.
In this case, we decided to apply a hybrid solution. First,
we forced the DeliveryPlanner component to be internally
developed to prevent logic bomb attacks. Then, we changed
the model design to incorporate a MAC protection, to make
the system cyber-resilient to network injection attacks on the
bus1 connection. After those changes, CRV could prove the
satisfaction of property P6 and P7 in 168s.

VII. RELATED WORK

There are at least four relevant lines of work that analyze
system designs for security threats. They are based respectively
on: general model checkers, cryptographic protocol verifiers,
fault analysis tools, and specialized analyzers. We highlight
the main differences between CRV and each of these classes
of tools.

A. Model Checkers

Model checkers used for cyber-security generally per-
form analysis at one of two granularities: system-level and
component-level. The former considers only system-level in-
puts to be adversarially-controlled, overlooking cases where
the integrity of individual components is violated. The
latter considers inputs of an individual component to be
adversarially-controlled, letting one mimic the integrity vio-
lation of that component. To lift the analysis from individual
components to the whole system, manual efforts are needed
to recompose component-level guarantees into global/system-
level properties. Correspondingly, component-level counterex-
amples have to be lifted to the system-level in order to
construct a system-wide attack. In contrast, the results obtained
from the analysis of the threat-instrumented model in CRV can
be automatically interpreted at the system level.

Instrumented versions of a system model are used in tra-
ditional fault analysis to study the system’s behavior in the
presence of faults. The Safety Annex for AADL [30] allows
one to specify the behavior of systems and components in the
presence of faults. The tool supports the computation of all
minimal cut sets, but not the direct computation of an individ-
ual solution. Similarly, the xSAP [4] platform offers library-
based specification of faults, automatic model-extension with
fault specifications, and the generation of minimal cut sets.
However, its primary emphasis also lies in fault analysis rather
than security. Finally, all these techniques focus on the globally
optimized setting. To our knowledge, the use of the locally
optimized setting [24] is novel.

B. Cryptographic Protocol Verifiers

Cryptographic protocol verifiers (CPVs) such as Tamarin
[26] and ProVerif [5], [22], [2] can reason about cryptographic
constructs and support confidentiality properties (e.g., obser-
vational equivalence), neither of which are currently supported
by CRV. In contrast, CRV has the following advantages: (i)
it can support rich system descriptions with linear (integer and

real) arithmetic constraints and temporal constraints, which are
not supported by current CPVs; (ii) it can provide diagnostic
information in the form of blame and merit assignment at the
end of the analysis, which is unavailable in CPVs; (iii) it can
analyze rich stateful systems more scalably than current CPVs;
(iv) it supports automated analysis of rich safety properties
beyond what is supported by tools such as ProVerif [5] or their
extensions [22], [2]; (v) thanks to compositional verification,
it can support the analysis of large systems that are not
amenable to analysis by CPVs. In a sense, CRV and CPVs are
complementary. One way to support confidentiality properties
and cryptographic constructs in CRV’s workflow would be by
integrating a CPV in it.

C. Fault analysis tools

Fault analysis tools, especially the ones that consider Byzan-
tine faults, are the closest in spirit to the CRV work. However,
they generally are neither amenable to seamless integration
with CPV (due to the lack of support for replay attackers),
which is needed to analyze rich properties of systems contain-
ing cryptographic constructs, nor do they support meta-level
diagnostic analyses.

D. Specialized analyzers

These analyzers focus on analyzing specific protocols in
a particular domain (e.g., cellular networks [19], [20], [3],
TCP/IP [6], WiFi [33]), a very limited set of security properties
(e.g., non-interference, cache side channel, transient execution
vulnerabilities), or particular systems (e.g., IoT [7]). Among
these efforts, the closest to our approach are LTEInspector [19]
and 5GReasoner [20] where the Dolev-Yao adversary model
is used to perturb the public communication between two
components when model checking the protocol under analysis.
Other tools such as ThreatGet [10] only analyze systems at the
architectural level with a pre-defined set of threats. Besides
the restriction to specific domains, none of the prior work
is capable of statically analyzing reactive system designs with
respect to integrity properties — the focus of CRV’s analysis.

VIII. CONCLUSION

We have presented CRV, a general approach and tool
to statically check the cyber-resiliency of a design against
current and future integrity attacks. A case study with an
unmanned delivery drone system demonstrates that CRV can
analyze effectively the cyber-resiliency of complex designs
with respect different integrity properties.

Possible future directions of research include enhancing
CRV’s capability to support a limited form of availability
properties, which can be formalized as liveness properties,
and confidentiality properties, formalizable as non-interference
properties. This would enable CRV to support the analysis of
functional properties whose violation require a combination of
integrity, availability, and confidentiality attacks. Additionally,
CRV could be extended to integrate a CPV and hence consider
cryptographic constructs.



ACKNOWLEDGMENTS

This work was partially supported by DARPA grant
#N66001-18-C-4006 and by the US Air Force Research Lab.

REFERENCES

[1] Parosh Aziz Abdulla, Johann Deneux, Gunnar Stålmarck, Herman
Ågren, and Ove Åkerlund. Designing safe, reliable systems using
scade. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, First International Symposium, ISoLA
2004, Paphos, Cyprus, October 30 - November 2, 2004, Revised Selected
Papers, volume 4313 of Lecture Notes in Computer Science, pages 115–
129. Springer, 2004.

[2] Myrto Arapinis, Joshua Phillips, Eike Ritter, and Mark D. Ryan.
Statverif: Verification of stateful processes. Journal of Computer
Security, 22(5):743–821, July 2014.

[3] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf
Sasse, and Vincent Stettler. A formal analysis of 5g authentication.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 1383–1396, New York, NY,
USA, 2018. Association for Computing Machinery.

[4] Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti,
Marco Gario, Alberto Griggio, Cristian Mattarei, Andrea Micheli, and
Gianni Zampedri. The xsap safety analysis platform. In Marsha
Chechik and Jean-François Raskin, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in Com-
puter Science, pages 533–539. Springer, 2016.

[5] Bruno Blanchet. Modeling and verifying security protocols with the ap-
plied pi calculus and proverif. Found. Trends Priv. Secur., 1(1–2):1–135,
October 2016.

[6] Yue Cao, Zhongjie Wang, Zhiyun Qian, Chengyu Song, Srikanth V.
Krishnamurthy, and Paul Yu. Principled unearthing of tcp side channel
vulnerabilities. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, page 211–224,
New York, NY, USA, 2019. Association for Computing Machinery.

[7] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. Soteria: Automated
iot safety and security analysis. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 147–158, 2018.

[8] Adrien Champion, Arie Gurfinkel, Temesghen Kahsai, and Cesare
Tinelli. CoCoSpec: A mode-aware contract language for reactive
systems. In Rocco De Nicola and Eva Kühn, editors, Proceedings of
the 8th International Conference on Software Engineering and Formal
Methods, Vienna, Austria, volume 9763 of Lecture Notes in Computer
Science, pages 347–366. Springer, 2016.

[9] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare
Tinelli. The Kind 2 model checker. In Swarat Chaudhuri and Azadeh
Farzan, editors, Computer Aided Verification - 28th International Confer-
ence, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II, volume 9780 of Lecture Notes in Computer Science, pages 510–
517. Springer, 2016.

[10] Sebastian Chlup, Korbinian Christl, Christoph Schmittner, Abdelka-
der Magdy Shaaban, Stefan Schauer, and Martin Latzenhofer. THREAT-
GET: towards automated attack tree analysis for automotive cybersecu-
rity. Inf., 14(1):14, 2023.

[11] Darren Cofer, Andrew Gacek, Steven Miller, Michael W. Whalen, Brian
LaValley, and Lui Sha. Compositional verification of architectural
models. In Alwyn E. Goodloe and Suzette Person, editors, NASA
Formal Methods, pages 126–140, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
Proceedings of the Theory and practice of software, 14th international
conference on Tools and algorithms for the construction and analysis
of systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[13] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[14] Michael Durling, Heber Herencia-zapana, John Interrante, Baoluo Meng,
Abha Moitra, Kit Siu, Vidhya Tekken Valapil, Daniel Prince, Ce-
sare Tinelli, Omar Chowdhury, Daniel Larraz, Moosa Yahyazadeh,
and Fareed Arif. DARPA: Cyber Assured Systems Engineering
(CASE) — VERDICT Project, 2020. Available at https://github.com/
ge-high-assurance/VERDICT/wiki.

[15] Mitziu Echeverria, Zeeshan Ahmed, Bincheng Wang, M. Fareed Arif,
Syed Rafiul Hussain, and Omar Chowdhury. PHOENIX: device-centric
cellular network protocol monitoring using runtime verification. In 28th
Annual Network and Distributed System Security Symposium, NDSS
2021, virtually, February 21-25, 2021. The Internet Society, 2021.

[16] P. H. Feiler, B. A. Lewis, and S. Vestal. The sae architecture analysis
design language (aadl) a standard for engineering performance critical
systems. In 2006 IEEE Conference on Computer Aided Control System
Design, 2006 IEEE International Conference on Control Applications,
2006 IEEE International Symposium on Intelligent Control, pages 1206–
1211, Oct 2006.

[17] Elaheh Ghassabani, Andrew Gacek, and Michael W Whalen. Efficient
generation of inductive validity cores for safety properties. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 314–325, 2016.

[18] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.
The synchronous data flow programming language lustre. Proceedings
of the IEEE, 79(9):1305–1320, 1991.

[19] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa
Bertino. LTEInspector: A Systematic Approach for Adversarial Testing
of 4G LTE. In Proceedings 2018 Network and Distributed System
Security Symposium, San Diego, CA, 2018. Internet Society. tex.ids:
hussainLTEInspectorSystematicApproach2018a.

[20] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowd-
hury, and Elisa Bertino. 5greasoner: A property-directed security
and privacy analysis framework for 5g cellular network protocol. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 669–684, New York, NY,
USA, 2019. Association for Computing Machinery.

[21] Software Engineering Institute. AADL – Architecture Analysis and
Design Language. http://aadl.info. Accessed: May 20, 2023.

[22] Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. Verifpal: Cryp-
tographic Protocol Analysis for the Real World, page 159. Association
for Computing Machinery, New York, NY, USA, 2020.

[23] Daniel Larraz, Mickaël Laurent, and Cesare Tinelli. Merit and blame
assignment with Kind 2. In Alberto Lluch-Lafuente and Anastasia
Mavridou, editors, Formal Methods for Industrial Critical Systems -
26th International Conference, FMICS 2021, Paris, France, August 24-
26, 2021, Proceedings, volume 12863 of Lecture Notes in Computer
Science, pages 212–220. Springer, 2021.

[24] Daniel Larraz and Cesare Tinelli. Finding locally smallest cut sets using
max-smt. ACM SIGAda Ada Letters, 42(2):32–39, Apr 2023.

[25] Daniel Larraz, Arjun Viswanathan, Cesare Tinelli, and Mickaël Laurent.
Beyond model checking of idealized Lustre in Kind 2. ACM SIGAda
Ada Letters, 42(2):40–44, Apr 2023.

[26] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The
tamarin prover for the symbolic analysis of security protocols. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Ver-
ification, pages 696–701, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[27] Baoluo Meng, Daniel Larraz, Kit Siu, Abha Moitra, John Interrante,
William Smith, Saswata Paul, Daniel Prince, Heber Herencia-Zapana,
M. Fareed Arif, Moosa Yahyazadeh, Vidhya Tekken Valapil, Michael
Durling, Cesare Tinelli, and Omar Chowdhury. VERDICT: A language
and framework for engineering cyber resilient and safe systems. Systems,
9(1), 2021.

[28] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. Zero
trust architecture. Technical report, National Institute of Standards and
Technology, 2020.

[29] SolarWinds. Solarwinds security advisory. Available at https://www.
solarwinds.com/securityadvisory.

[30] Danielle Stewart, Jing Janet Liu, Michael W Whalen, Darren Cofer, and
Michael Peterson. Safety annex for the architecture analysis and design
language. In 10th European Conference Embedded Real Time Systems
ERTS, 2020.

[31] OSATE team. OSATE – Open Source AADL Tool Environment. https:
//osate.org. Accessed: May 20, 2023.

https://github.com/ge-high-assurance/VERDICT/wiki
https://github.com/ge-high-assurance/VERDICT/wiki
http://aadl.info
https://www.solarwinds.com/securityadvisory
https://www.solarwinds.com/securityadvisory
https://osate.org
https://osate.org


[32] VERDICT team. VERDICT – Verification Evidence and Resilient
Design in Anticipation of Cybersecurity Threats. https://github.com/
ge-high-assurance/VERDICT. Accessed: May 20, 2023.

[33] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing
nonce reuse in WPA2. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS). ACM, 2017.

https://github.com/ge-high-assurance/VERDICT
https://github.com/ge-high-assurance/VERDICT

	Introduction
	Design Overview of CRV
	Problem Definition and Scope
	CRV Architecture and Workflow
	Challenges

	Design Model Instrumentation
	Attack Effects
	Utility of CRV's What-if Analyses and Threat Models
	Built-in Threat Models

	Model Checking and Diagnostics
	Attack Traces
	Blame Assignment
	Merit Assignment

	Implementation of CRV
	A Case Study on Unmanned Delivery Drone
	System Architecture of udd
	Design Model of udd
	CRV Analysis
	Details on Case Study Experiments

	Related Work
	Model Checkers
	Cryptographic Protocol Verifiers
	Fault analysis tools
	Specialized analyzers

	Conclusion
	References

