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Abstract. We introduce two new major features of the open-source model checker
Kind 2 which provide traceability information between specification and design
elements such as assumptions, guarantees, or other behavioral constraints in syn-
chronous reactive system models. This new version of Kind 2 can identify min-
imal sets of design elements, known as Minimal Inductive Validity Cores, which
are sufficient to prove a given set of safety properties, and also determine the set
of MUST elements, design elements that are necessary to prove the given proper-
ties. In addition, Kind 2 is able to find minimal sets of design constraints, known
as Minimal Cut Sets, whose violation leads the system to an unsafe state. We il-
lustrate with an example how to use the computed information for tracking the
safety impact of model changes, and for analyzing the tolerance and resilience of
a system against faults.
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1 Introduction

KIND 2 [6] is an open-source3 SMT-based model checker for safety properties of finite-
and infinite-state synchronous reactive systems. It takes as input models written in an
extension of the Lustre language [11]. The extension allows the specification of assume-
guarantee-style contracts for the modeled system and its components which enables
modular and compositional reasoning and considerably increases scalability. KIND 2’s
contract language [5] is expressive enough to allow one to represent any (LTL) regular
safety property by recasting it in terms of invariant properties. KIND 2 runs concurrently
several model checking engines which cooperate to prove or disprove contracts and
properties. In particular, it combines two induction-based model checking techniques,
k-induction [16] and IC3 [4], with various auxiliary invariant generation methods.

One clear strength of model checkers is their ability to return precise error traces
witnessing the violation of a given safety property. In addition to being invaluable to
help identify and correct bugs, error traces also represent a checkable unsafety certifi-
cate. Similarly, some model checkers are able to return some form of corroborating
evidence when they declare a safety property to be satisfied by a system under analysis.
For instance, KIND 2 can produce an independently checkable proof certificate for the
properties that it claims to have proven [14]. However, these certificates, in the form of
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a k-inductive invariant, give limited user-level insight on what elements of the system
model contribute to the satisfaction of the properties.

Contributions We describe two new diagnostic features of KIND 2 that provide more
insights on verified properties: (1) the identification of minimal sets of model elements
that are sufficient to prove a given set of safety properties, as well as the subset of
design elements that are necessary to prove the given properties; (2) the computation
of minimal sets of design constraints whose violation leads the system to falsify one of
more of the given properties.

Although these two pieces of information are closely related, each of them can be
naturally mapped to a typical use case in model-based software development: respec-
tively, merit assignment and blame assignment. With the former the focus is on assess-
ing the quality of a system specification, tracking the safety impact of model changes,
and assisting in the synthesis of optimal implementations. With the latter, the goal is to
determine the tolerance and resilience of a system against faults or cyber-attacks.

In general, proof-based traceability information can be used to perform a variety
of engineering analyses, including vacuity detection [12]; coverage analysis [7, 9]; im-
pact analysis [15], design optimization; and robustness analysis [17, 18]. Identifying
which model elements are required for a proof, and assessing the relative importance
of different model elements is critical to determine the quality of the overall model (in-
cluding its assume-guarantee specification), determining when and where to implement
changes, identifying components that need to be reverified, and measure the tolerance
and resilience of the system against faults and attacks.

2 Running Example

We will use a simple model to illustrate the concepts and the functionality of KIND 2
introduced in this paper. Suppose we want to design a component for an airplane that
controls the pitch motion of the aircraft, and suppose one of the system requirements
is that the aircraft should not ascend beyond a certain altitude. The controller must
read the current altitude of the aircraft from a sensor, and modify the next position
of the aircraft’s nose accordingly. Moreover, we want the system to be fault-tolerant
to sensor failures. One way to improve system fault-tolerance is to introduce some
redundancy. In particular, we can equip the system with three different altimeters so
the controller receives three independent altitude values. Then the controller, with the
help of a dedicated component, a triplex voter, takes the average of the two altitude
values that are closest to each other — as they are more likely to be close to the actual
altitude. For simplicity, we will ignore other relevant signals that should be considered
in a real setting to control the elevation of the aircraft.

Following a model-based design, we model an abstraction of the system’s environ-
ment to which the aircraft’s controller will react. We also model the fact that the system
relies on possibly imperfect readings of the current altitude by the sensors to decide the
next pitch value. Finally, we provide a specification for the controller’s behavior so that
it satisfies the system requirement of interest.

Our model is described in Figure 1 in KIND 2’s input language where system com-
ponents are called nodes. The main component, SystemModel, is an observer node that
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1 node SystemModel (const TH, UB, ERR: real; alt1, alt2, alt3: real)
2 returns (act alt: real);
3 (*@contract
4 assume ”C1” TH > 0.0; assume ”C2” UB > 0.0; assume ”C3” ERR >= 0.0;
5 assume ”S1” abs(0.0 −> pre act alt − alt1) <= ERR;
6 assume ”S2” abs(0.0 −> pre act alt − alt2) <= ERR;
7 assume ”S3” abs(0.0 −> pre act alt − alt3) <= ERR;
8 guarantee ”R1” act alt <= TH;
9 *)

10 var pitch, alt: real;
11 let
12 alt = TriplexVoter(alt1, alt2, alt3);
13 pitch = Controller(TH, UB, ERR, alt);
14 act alt = Environment(UB, pitch);
15 tel
16

17 node imported Controller (const TH, UB, ERR: real; alt: real) returns (pitch: real);
18 (*@contract
19 const LIMIT: real = TH − (UB + ERR);
20 guarantee ”L1” alt > LIMIT => pitch < 0.0;
21 *)

Fig. 1: System model and subcomponents. Operators −>, abs and => are respectively
the initialization operator, the absolute value function, and Boolean implication.

represents the full system consisting in this case of just three subcomponents: one node
modeling the controller, one modeling a triplex voter, and another one modeling the en-
vironment. The observer has three inputs: alt1, alt2, and alt3, representing the altitude
values from each altimeter, and an output act alt, representing the current altitude of
the aircraft, which we are modeling as a product of the environment in response to the
pitch value generated by the controller.

KIND 2 allows the user to specify contracts for individual nodes, either as special
Lustre comments added directly inside the node declaration, or as the instantiation of
an external stand-alone contract that can be imported in the body of other contracts.
The contract of SystemModel, included directly in the node, specifies assumptions on
the altitude values provided by the sensors and on a number of symbolic constants (TH,
UB and ERR) which act in effect as model parameters. The contract assumes at line 4
that those constants are positive, or non-negative for ERR. The assumptions at lines 5–7
account for fact that, while the altitude value produced by each altimeter is not 100%
accurate in actual settings, its error is bounded by a constant (ERR)4. The contract
includes a guarantee (line 8) that formalizes the requirement that aircraft maintain its
altitude below a certain threshold TH at all times. The body of SystemModel is simply

4 The initialization operator −> is used to specify initial state values. Operationally, a node has
a cyclic behavior: at each tick t of an abstract global clock it reads the value of each input
stream at time t, and instantaneously computes the value of each output stream at time t. For
streams x and y, the value (x−> y)(t) for stream x -> y equals x(t) for t = 0 and y(t) for t > 0.
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1 node TriplexVoter (alt1,alt2,alt3: real) returns (r: real);
2 var ad12,ad13,ad23,m,avg1,avg2,avg3: real;
3 let
4 (ad12, ad13, ad23) = (abs(alt1 − alt2), abs(alt1 − alt3), abs(alt2 − alt3));
5 m = min(ad12, min(ad13, ad23));
6 (avg1, avg2, avg3) = (alt1 + alt2) / 2.0, (alt1 + alt3) / 2.0, (alt2 + alt3) / 2.0));
7 r = if m = ad12 then avg1 else if m = ad13 then avg2 else avg3;
8 tel

Fig. 2: Low-level specification of the Triplex voter.

1 node imported Environment (const UB: real; pitch: real) returns (alt: real);
2 (*@contract
3 guarantee ”E1” (alt = 0.0) −> true;
4 guarantee ”E2” alt >= 0.0;
5 guarantee ”E3” true −> (pitch < 0.0 => alt <= pre alt);
6 guarantee ”E4” true −> (pitch < 0.0 => alt >= pre alt − UB);
7 guarantee ”E5” true −> (pitch > 0.0 => alt >= pre alt);
8 guarantee ”E6” true −> (pitch > 0.0 => alt <= pre alt + UB);
9 guarantee ”E7” true −> (pitch = 0.0 => alt = pre alt);

10 *)

Fig. 3: Contract specification for the Environment component of SystemModel.

the parallel composition of a triplex voter, that takes the sensor values and computes an
estimated altitude for the controller as explained above, the controller component, and
the environment node.

A full specification for the TriplexVoter is given in Figure 2. We do not specify
the body of the Controller and the Environment nodes in our model because their de-
tails are not important for our purposes. Instead, we abstract their dynamics with an
assume-guarantee contract that captures the relevant behavior. In the Controller’s case,
we model the guarantee that the controller will produce a negative pitch value whenever
the sensor altitude indicates that the aircraft is getting too close to the threshold value
TH — with “too close” meaning that the difference between the current altitude and
the threshold is smaller than UB + ERR where UB represents an upper bound on the
change in altitude from one execution step to the next (see below).

The declaration of the Environment component and its contract are shown sepa-
rately in Figure 3. With alt representing the actual altitude of the aircraft, the contract’s
guarantees capture salient constraints on the physics of our model by specifying that a
positive pitch value (which has the effect of raising the nose of the aircraft and lowering
its tail) makes the aircraft ascend, a negative value makes it descend, and a zero value
keeps it at the same altitude.5 The contract also states that the actual altitude starts at
zero, is alway non-negative, and does not change by more than a constant value (UB)
in one sampling frame, where a sampling frame is identified with one execution step of

5 We are ignoring here that, in reality, the altitude also depends on aircraft speed.
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the synchronous model (one global clock tick) for simplicity. The latter constraint on
the altitude change rate captures physical limitations on the speed of the aircraft.

KIND 2 can easily prove that property (guarantee) R1 of SystemModel is invariant.
However, a few interesting questions arise: (1) Is property R1 satisfied because of the
conditions we imposed on the behavior of Controller, or does the property trivially
hold due to the stated assumptions over the environment and the sensors? (2) Are all
the assumptions over the environment and the sensors in fact necessary to prove the
satisfaction of property R1? (3) How resilient is the system against the failure of one or
more assumptions? We present in the following the new features of KIND 2 that help us
answer these questions. A demo video associated to this paper can be found here [1].

3 The New Features

The first of the two new features offered by KIND 2 consists in identifying which parts
of the input model were used to construct an inductive proof of invariance for R1.
The new functionality relies on the concept of inductive validity core introduced by
Ghassabani et al. [8]. Generally speaking, given a set of model elements M and an
invariant property P, an inductive validity core (IVC) for P is a subset of M that is
enough to prove P invariant. Kind 2 allows the user to choose among four sets of model
elements: assumptions/guarantees, node calls, equations in node definitions6, and as-
sertions7. In our running example, we consider P = R1 and M = S1 ∪C2 ∪E3 ∪{L1}
where S1 = {S1,S2,S3}, C2 = {C1,C2,C3}, and E3 = {E1,E2,E3,E4,E5,E6,E7}. In
particular, note that M is an IVC, although not a very interesting one. In practice, for
complex enough models, smaller IVCs exist. In particular is often possible to compute
efficiently a smaller IVC that contains few or no irrelevant elements. We can ensure that
the elements of an IVC for a property P are necessary by requiring it to be minimal, that
is, to have no proper subset that is also IVC for P. KIND 2 offers the option to compute
a small but possibly non-minimal IVC, a minimal IVC (MIVC), or all minimal IVCs.

IVCs for coverage and change impact analysis. If a property P of a system S has
multiple MIVCs, inspecting all of them provides insights on the different ways S sat-
isfies P. Moreover, given all the MIVCs for P, it is possible to partition all the model
elements into three sets [15]: a MUST set of elements which are required for proving
P in every case, a MAY set of elements which are optional, and a set of elements that
are irrelevant. This categorization provides complete traceability between specification
and design elements, and can be used for coverage analysis [9] and tracking the safety
impact of model changes. For instance, a change to one of the elements in the MAY set
for P will not affect the satisfaction of P but will definitely impact some other property
Q if it occurs in the MUST set for Q.

IVCs for fault-tolerance or cyber-resiliency analysis. Another use of IVCs, is in the
analysis of a system’s tolerance to faults [18] or resiliency to cyber-attacks [17]. For in-
stance, an empty MUST set for a system S and its invariant P indicates that the property
is satisfied by S in various ways, making the system fault tolerant or resilient against

6 Note that a node is Lustre is defined declaratively by a set of equations.
7 In Lustre, assertions are (unchecked) assumptions on a node’s input.
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cyber-attacks as far as property P is concerned. In contrast, a large MUST set suggest a
more brittle system, with multiple points of failure or a big attack surface.

Quantifying a system’s resilience. To help quantify the resilience of a system, KIND 2
also supports the computation of minimal cut sets (aka, minimal correction sets) for an
invariance property. Given a set of model elements M and an invariant property P, a cut
set C for P is a subset of M such that P is no longer invariant for M\C. A minimal cut set
(MCS) for P is a cut set none of whose proper subsets is a cut set for P. A smallest cut
set is an MCS of minimum cardinality. KIND 2 provides options to compute a (single)
smallest cut set, all the MCSs, and all the MCSs up to a given cardinality bound. In
the context of fault or security analyses, the cardinality of an MCS for a property P
represents the number of design elements that must fail or be compromised for P to be
violated. The smaller the MCS, or the higher the number of MCSs of small cardinality,
the greater the probability that the property can be violated.

Running example. If we ask KIND 2 to generate an IVC for the invariant R1 of the sys-
tem presented in Section 2, KIND 2 generates a IVC with 9 elements: assumptions S1,
S2, S3, and C1 from SystemModel’s contract, the (only) guarantee L1 in Controller’s
contract, and all guarantees in the contract of Environment except for E2, E4, and E5.
This tells us already that E2, E4, and E5 are not necessary to satisfy property R1 and is
enough to answer the second of the questions listed at the end of Section 2. Moreover,
since the guarantee L1 of Controller is part of the IVC, it is likely that the controller’s
behavior is relevant for the satisfaction of R1. However, we can not be sure because the
generated IVC is not necessarily minimal.

To confirm that L1 is indeed necessary we can ask KIND 2 to identify a true MIVC,
a more expensive task computationally. When we do that, KIND 2 returns the same
set. This confirms the necessity of the guarantee L1 but only for the specific proof of
R1’s invariance found by KIND 2. It might still be the case that the guarantee is not
required in general, that is, there may be other proofs that do not use L1, which would
be confirmed by the discovery of a different MIVC that does not contain it. In other
words, at this point we do not know whether L1 is a must element for R1. To determine
that, we can ask KIND 2 to compute the MUST set for property R1 in addition to the
MIVC. In that case, KIND 2 will return the same set as the MUST set, which confirms
that all the included elements are required and the excluded ones are irrelevant.

Note that the last result also means that assumptions S1, S2, and S3 are always nec-
essary, and thus, property R1 requires all three sensors to behave accordingly to their
specification. Put differently, the analysis shows that the introduced redundancy mecha-
nism does not actually make the system more fault tolerant. After reviewing the model,
however, one can conclude that to benefit from the triplex voter we must decrease the
safety limit value LIMIT in the controller’s contract. Specifically, it is enough to de-
crease it as follows, doubling the error bound value:

1 const LIMIT: real = TH − (UB + 2.0 * ERR);

After this change, KIND 2 stops classifying assumptions S1, S2, and S3 as MUST
elements. It computes a new MIVC of 8 elements which differs from the one computed
for the previous version of the model for the absence of S3. To confirm that this MIVC
is not the only solution, we can ask KIND 2 to compute all the MIVCs instead of a
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single one. This makes KIND 2 show two additional MIVCs that are symmetric to the
computed MIVC: one set that contains S1 and S3 rather than S1 and S2, and another
one that contains S2 and S3 instead S1 and S2. In alternative, we could ask KIND 2
to compute all the MCSs for the revised model. In that case, KIND 2 will find the
following MCSs: {E1}, {E3}, {E6}, {E7}, {C1}, {L1}, {S1,S2}, {S1,S3}, {S2,S3}.
This confirms that the system can now tolerate the failure of one of its three altimeters.

The exercise above illustrates how the new traceability feature in KIND 2 could be
used to detect a subtle flaw in our enhanced model that prevented it from making the
system fault-tolerant despite the triplication of the altitude sensors. We stress how a
simple safety analysis, verifying the invariance of R1 would not help detect such flaw.

4 Implementation details

KIND 2 is written in OCaml. All logical reasoning done by KIND 2 eventually reduces
to queries to an external SMT solver. The implementation of the new features required
around 2.8 KLOC. The computation of a small IVC for a property P is based on algo-
rithm IVC UC by Ghassabani et al. [8]. It consists of three main steps: (i) reducing
the value of k for the k-inductive proof of property P (obtained by finding a k-inductive
strengthening Q = Q1∧ ·· ·∧Qn of P); (ii) reducing the number of conjuncts in invari-
ant Q by removing those not needed in the proof; (iii) computing an UNSAT core over
the model constraints in the same query to the backend SMT solver that checks that
Q is a k-inductive strengthening of P. The computation of a single MIVC is based on
algorithm IVC UCBF, also by Ghassabani et al. [8]. The main idea is to generate a
small IVC first, and then minimize it using a brute-force approach that removes one
model element at a time and (model) checks that the property P still holds.

To compute all MIVCs we adapted algorithm UMIVC by Berryhill and Veneris [3]
which in turn is a generalization of previous work [2, 10]. It basically explores in an
efficient way the power set of model elements. The algorithm implemented in KIND 2
can be seen as an instantiation of UMIVC where all MCSs of cardinality 1 are pre-
computed. The major difference with UMIVC is that our algorithm is able to identify
the MUST set from the generated set of MCSs, which can be use to check for early
termination of the algorithm and to enhance the minimization of the intermediate IVCs
generated during the process.

The problem of finding one cut set for a system S and a property P with at most k
model elements is reduced to a model checking problem. Every violation of property P
in this problem leads to a cut set. KIND 2 keeps solving this model checking problem
using smaller and smaller bounds until there is no more violations. When that happens,
it can extract a cut set of minimal cardinality. KIND 2 is also able to find all possible
MCSs with cardinality smaller than a given bound by incrementally adding constraints
that block the previous solutions. When there are no more minimal sets within the cur-
rent cardinality bound, it increases that bound by one and repeats the process. It ends
this process when the cardinality bound equals the number of model elements consid-
ered, having computed at that point all possible MCSs.

We refer the interested reader to a related technical report [13] for further imple-
mentation details and experimental results.
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