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Abstract

This paper describes several new features of the open-source
model checker Kind 2. Its input language and model check-
ing engines have been extended to allow users to model
and reason about systems with machine integers. In addi-
tion, Kind 2 can now provide traceability information be-
tween specification and design elements, which can be used
for several purposes, including assessing the quality of a
system specification, tracking the safety impact of model
changes, and analyzing the tolerance and resilience of a sys-
tem against faults or cyber-attacks. Finally, Kind 2 is also
able to check whether a component contract is realizable
or not, and provide a deadlocking computation and a set of
conflicting guarantees when the contract is unrealizable.

Keywords: Machine-precise Model Checking, Safety Analy-
sis, Realizability Checking

1 Introduction

Kind 2 [4] is an SMT-based model checker for safety prop-
erties of finite- and infinite-state synchronous reactive sys-
tems. It takes as input models written in an extension of
the dataflow Lustre language [11]. The extension allows the
specification of assume-guarantee-style contracts for the
modeled system and its components which enables modular
and compositional reasoning and considerably increases scal-
ability. Kind 2’s contract language [3] is expressive enough
to allow one to represent any (LTL) regular safety prop-
erty by recasting it in terms of invariant properties. One
of Kind 2’s distinguishing features is its support for mod-
ular and compositional analysis of hierarchical and multi-
component systems. Kind 2 traverses the subsystem hier-
archy bottom-up, analyzing each system component, and
performing fine-grained abstraction and refinement of the
sub-components. At the architectural level, Kind 2 runs con-
currently several model checking engines which cooperate
to prove or disprove contracts and properties. In particular,
it combines two induction-based model checking techniques,
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𝑘-induction [20] and IC3 [2], with various auxiliary invariant
generation methods. All the engines are fully automated and
logic-based, relying on external SMT solvers for satisfiabil-
ity/entailment checks and other relevant logical operations
such as quantifier elimination.

Kind 2 is open-source and distributed in binary and source-
code form under a liberal license.1 This paper focuses on its
most recent features, in particular, reasoning about mod-
els with machine integer values, providing traceability in-
formation between specification and design elements, and
checking component contracts are realizable.

2 Machine-precise Verification

Lustre is a synchronous dataflow language that operates on
infinite streams of values of three basic types: bool, int (fi-
nite precision integers), and real (floating point numbers).
In contrast, Kind 2 considers an idealized version of Lus-
tre, which treats int as the type of mathematical integers,
and real as the type of real numbers. Idealized Lustre pro-
grams can be faithfully encoded as state transition systems
𝑆 = ⟨s, 𝐼 [s],𝑇 [s, s′]⟩ where s is a vector of typed state vari-
ables, 𝐼 is the initial state predicate, and 𝑇 is a two-state
transition predicate (with s′ being a renamed version of s).
Then, instances of 𝐼 and𝑇 can be expressed as quantifier-free
first-order formulas over the combined theory of equality
with uninterpreted functions and integer/real arithmetic.
SMT solvers implement efficient decision procedures for the
fragment of this theory that limits arithmetic constraints
to linear ones. Although using idealized Lustre is often ade-
quate for proving and disproving a wide range of properties
of programs of interest, sometimes it is important to reason
with respect to the original semantics of the numeric types
(for instance, to capture accurately the modulo 𝑛 behavior of
arithmetic operators over machine integers). For the latter
cases, we have extended Kind 2 to support both signed and
unsigned versions of C-style machine integers of size 8, 16,
32, and 64.

Semantics, declaration, and value construction. The
standard semantics of machine integers of size𝑤 is binary
numbers of width 𝑤 , with signed machine integers repre-
sented using 2’s complement. We effectively adopt the same
semantics by representing machine integers internally as
(signed or unsigned) bit vectors of width 𝑤 . Kind 2 cur-
rently supports signed machine integers of width 8, 16, 32

1Kind 2 is available at http://kind.cs.uiowa.edu.
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and 64, allowing expressions of types int8, int16, int32, and
int64, respectively, and their unsigned versions, with types
uint8, uint16, uint32, and uint64. Machine integers values
can be constructed using explicit conversion functions ap-
plied to integer constants, with a conversion functions for
each possible destination type. For example, uint8 converts
any numeral 𝑛 to the unsigned 8-bit value corresponding to
the integer value (𝑛 mod 8). This means, for instance that
uint8 0 and uint8 256 are both converted to the 8-bit zero
value. Conversions in the opposite direction are also possible,
with the expected inclusion semantics. Conversions between
machine integers of different widths are also allowed as long
as the types are both signed or both unsigned. Values are
adjusted modulo the range of the destination type when
converted to a smaller width, and remain unchanged when
converted to a larger width.

Operations. Kind 2 supports C-style arithmetic, logical,
shift, and comparison operations over machine integers. Lus-
tre’s integer operators +, -, *, div, and mod are overloaded
to apply also to two machine integers of the same type and
return a machine integer of that type.
The integer comparison operators >, <, >=, <=, = are over-

loaded to the corresponding binary operations over machine
integers of the same type. They all output a boolean value.
There are new machine integer operators for bit-wise

conjunction (&&), disjunction (||), and negation (!), all with
the expected arity and type, as well as left shift (lsh) and
right shift (rsh) operators. The last two are both binary: the
two inputs must have the same width but only the first can
be signed. The output is signed if the first input is signed,
and is unsigned otherwise; it is obtained by shifting the first
input by the number of positions indicated by the second
input. Right-shifting when the first operand is signed results
in an arithmetic right shift, where the sign bit is preserved.
A left-shift is equivalent to multiplication by 2 (modulo the
width), and a right-shift is equivalent to division by 2. In
other words, the left shift operator shifts towards the most-
significant bit and the right shift operator shifts towards the
least-significant bit.

To check safety properties of Lustre models with machine
integers Kind 2 relies on off-the-shelf SMT solvers by lever-
aging their support for the theory of bit vectors of fixed
width. Currently, only the SMT solvers Z3 [6] and cvc5 [1]
support logics that allow the combined use of mathemati-
cal integers and machine integers. To use any of the other
supported SMT solvers, the Lustre input must contain only
boolean and machine integer types.
Kind 2’s manual [7] provides more detailed information

on machine integer support and on which SMT solvers are
recommended for different combinations of data types in the
input model.

In future work, we plan to extend Kind 2 to support float-
ing point types as well.

3 Realizability Checking of Contracts

Contract-based software development is a major methodol-
ogy for the rigorous construction of component-based re-
active systems, embedded systems in particular. Contracts
provide a mechanism for capturing the information needed
to specify and reason about component-level properties at a
desired level of abstraction. In this paradigm, a component𝐶
can be associated with a contract specifying its input-output
behavior in terms of guarantees provided by 𝐶 when its en-
vironment satisfies certain assumptions. Contracts are an
effective way to establish boundaries between components
and can be used to facilitate proofs of global properties of a
complex system prior to its construction. Such proofs cap-
italize on the fact that complex components are typically
specified simply as the composition of lower-level compo-
nents. However, they are also built upon the implicit assump-
tion that each leaf-level component contract in the system
hierarchy is realizable. Roughly speaking, this means that
it is possible to construct a component that, for any input
allowed by the contract assumptions, can produce an output
satisfying the contract guarantees. Unfortunately, without
tool support it is all too easy for system designers to write
leaf-level contracts that are unrealizable.
In Kind 2 the behavior of each component, or node in

Lustre terminology, can be specified by providing either a
set of equations that define the component’s output in terms
of its input and internal state (a low-level specification), or
an assume-guarantee contract (a high-level specification),
or both. The syntax restrictions and semantics of the Lus-
tre language ensure that every low-level specification of a
component is executable in the sense that for each possible
input and internal state for the component there is a unique
output and next state for the component to move to. Hence
low-level specifications in Lustre are realizable by construc-
tion. When both specifications are provided in Kind 2, the
low-level specification is expected to be a refinement of the
high-level one. Kind 2 checks this by verifying that every
execution that satisfies the former also satisfies the latter. In-
formally, we say that the set of equations satisfy the contract.
In compositional reasoning, when only a contract is provided
for a subcomponent𝐶 , Kind 2 assumes the existence of such
a component when checking the properties of components
that use 𝐶 . This, however, may lead to bogus compositional
proof arguments when 𝐶’s contract is unrealizable.
Kind 2 now provides an option to check whether the

contract of a component with no low-level specification is
realizable. When a contract is unrealizable, the only way
to fully explain why the contract is impossible to satisfy is
to provide a counter-strategy, a (temporal) description of an
environment for the component that prevents any potential
realization of that component.
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A user can examine a counter-strategy to try understand
the reasons the contract is unrealizable, and fix it accord-
ingly. However, as pointed out by Könighofer et al [13], a
counter-strategy may be very large and complex, especially
if it was generated automatically. For this reason, instead
of a counter-strategy, Kind 2 provides examples of execu-
tion scenarios that lead to impossible conditions. Specifically,
it outputs a single, finite computation path all of whose
transitions satisfy the contract but whose end state has no
outgoing transitions that satisfy the contract. In other words,
Kind 2 provides concrete evidence for the existence of a
reachable deadlocking state 𝑑 for any putative realization of
the contract. In addition, to facilitate the comprehension of
the deadlocked state further, Kind 2 also provides a state
𝑑 ′ such that transitioning from 𝑑 to 𝑑 ′ would minimize the
number of violated contract guarantees. The (non-empty)
set of the violated guarantees in question is returned as well.
When the contract is proven unrealizable, the user has

also the option of invoking a sanity check on whether the
contract is satisfiable at all, i.e., whether it is possible to con-
struct a component such that for at least one input sequence
allowed by the contract assumptions, there is some output
value that the component can produce to satisfy the contract
guarantees.
The realizability check implemented in Kind 2 is largely

based on a synthesis procedure for infinite-state reactive sys-
tems, called JSyn-vg, by Katis et al. [12]. The main difference
is that while the original work relies on a dedicated solver
to implement the functionality provided by the AE-VAL pro-
cedure [8] of JSyn-vg, our implementation only requires a
generic quantifier elimination procedure for the underlying
data theories supported by Kind 2 (Booleans, linear inte-
ger arithmetic, and linear real arithmetic). Such quantifier
elimination capabilities are provided by state-of-the-art SMT
solvers such as Z3 [6] and cvc5 [1].
A detailed description of Kind 2’s realizability checking

functionality and an experimental evaluation comparing our
implementation and the original implementation of JSyn-
vg in the JKind model checker is available in a technical
report [17].

4 Merit and Blame Assignment

One clear strength of model checkers is their ability to return
precise error traces witnessing the violation of a given safety
property. In addition to being invaluable in helping identify
and correct bugs, error traces also represent a checkable
unsafety certificate. Similarly, some model checkers are able
to return some form of corroborating evidence when they
declare a safety property to be satisfied by a system under
analysis. For instance, Kind 2 can produce an independently
checkable proof certificate for each of the properties it claims
to hold [18]. Since these proof certificates are meant for
automated proof checkers, however, they usually provide

limited user-level insights on what elements of the system
model contribute to the satisfaction of a property.
Kind 2 now offers two new diagnostic features that pro-

vide additional information on a chosen set of verified prop-
erties [15]: (𝑖) the identification of minimal sets of model
elements that are sufficient to prove the properties together
with the subset of model elements that are necessary to prove
those properties; (𝑖𝑖) the computation of minimal sets of
model constraints whose violation leads the system to falsify
one of more of the chosen properties.
Although these two pieces of information are closely re-

lated, they can be naturally mapped to difference typical use
cases in model-based software development: respectively,
merit assignment and blame assignment. With the former the
focus is on assessing the quality of a system specification,
tracking the safety impact of model changes, and assisting
human users in the synthesis of optimal implementations.
With the latter, the goal is to determine the tolerance and
resilience of a system against faults or adversarial environ-
ments due to natural causes or cyber-attacks. In general,
proof-based traceability information can be used to perform
a variety of engineering analyses, including vacuity detec-
tion [14]; coverage analysis [5, 10]; impact analysis [19],
design optimization; and robustness analysis [21, 22].

The merit assignment functionality relies on the concept
of inductive validity core introduced by Ghassabani et al. [9].
Generally speaking, given a set of model elements𝑀 and an
invariance property 𝑃 , an inductive validity core (IVC) for 𝑃
is a subset of𝑀 that is enough to prove 𝑃 invariant. Kind 2
allows the user to choose among four sets of model elements:
assumptions/guarantees in contracts, node calls, equations in
node definitions, and assertions2. Note that𝑀 itself is an IVC,
although not a very interesting one. In practice, for complex
enough models, smaller IVCs exist. In fact, it is often possible
to compute efficiently a smaller IVC that contains few or
no irrelevant elements. We can ensure that the elements of
an IVC for a property 𝑃 are necessary by requiring the IVC
to be minimal, that is, have no proper subsets that are also
an IVC for 𝑃 . Kind 2 offers the option to compute a small
but possibly non-minimal IVC, a minimal IVC (MIVC), or all
minimal IVCs.

IVCs for coverage and change impact analysis. If a prop-
erty 𝑃 of a system 𝑆 has multiple MIVCs, inspecting all of
them provides insights on the different ways 𝑆 satisfies 𝑃 .
Moreover, given all the MIVCs for 𝑃 , it is possible to par-
tition all the model elements into three sets [19]: a set of
MUST elements which are required for the satisfiability of
𝑃 in every case, a set of MAY elements which are optional,
and a set of elements that are irrelevant. This categorization

2Assertions are unchecked assumptions on a node’s input. They are depre-
cated in Kind 2, in favor of contract assertions, but still supported for being
part of Lustre.
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provides complete traceability between specification and de-
sign elements, and can be used for coverage analysis [10]
and for tracking the safety impact of model changes [15].
For instance, a change to an element 𝑒 in the MAY set for 𝑃
will not affect the satisfaction of 𝑃 but will definitely impact
some other property 𝑄 if 𝑒 occurs in the MUST set for 𝑄 .

IVCs for fault-tolerance or cyber-resiliency analysis.

Another use of IVCs, is in the analysis of a system’s tolerance
to faults [22] or resiliency to cyber-attacks [21]. For instance,
an empty MUST set for a system 𝑆 and one of its invariants
𝑃 indicates that the property is satisfied by 𝑆 in various
alternative ways, making the system tolerant to faults or
resilient against cyber-attacks as far as 𝑃 is concerned. In
contrast, a large MUST set suggest a more brittle system,
with multiple points of failure or a big attack surface.

Quantifying a system’s resilience. To help quantify the
resilience of a system, Kind 2 also supports the computation
of minimal cut sets (aka, minimal correction sets) for an in-
variance property 𝑃 . Given a set of model elements𝑀 , a cut
set𝐶 for 𝑃 is a subset of𝑀 such that 𝑃 is no longer invariant
for𝑀 \𝐶 . A minimal cut set (MCS) for 𝑃 is a cut set none of
whose proper subsets is a cut set for 𝑃 . A smallest cut set is
an MCS of minimum cardinality. Kind 2 provides options to
compute a (single) smallest cut set, all the MCSs, and all the
MCSs up to a given cardinality bound. In the context of fault
or security analyses, the cardinality of an MCS for a property
𝑃 represents the number of design elements that must fail or
be compromised for 𝑃 to be violated. The smaller the MCS,
or the higher the number of MCSs of small cardinality, the
greater the probability that the property can be violated.

We refer the interested reader to a related publication [15]
and technical report [16] for implementation details and
experimental results on merit and blame assignment with
Kind 2.
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